Download PDF

Hyundai Wearable Robotics for Walking Assistance

The Central Advanced Research and Engineering Institute at Hyundai Motor Company develops future mobility technologies. Rather than provide conventional vehicle products to customers, this research center creates new mobility devices with a wide range of speeds for a variety of people, including the elderly and the disabled. As our society ages, there is a greater need for systems that can aid mobility. Thus, we are developing wearable exoskeleton robots with NI embedded controllers for the elderly and patients with spinal cord injuries to use.

Key Challenge
Developing a system that can handle complex control algorithms to capture data remotely from various sensors simultaneously and perform real-time control of multiple actuators for a wearable robotics device for walking assistance.

  • National Instruments
    NI provides powerful, flexible technology solutions that accelerate productivity and drive rapid innovation. From daily tasks to grand challenges, NI helps engineers and scientists overcome complexity to exceed even their own expectations. Customers in nearly every industry—from healthcare and automotive to consumer electronics and particle physics—use NI’s integrated hardware and software platform to improve our world.
  • Equipment & Machinery
  • Product Development
  • Hyundai Motor Company
  • Using the LabVIEW RIO platform, including a CompactRIO embedded system and a real-time controller with an FPGA control architecture provided by Single-Board RIO, to acquire data from various sensors and control peripheral units, high-speed communication devices, and actuators; and using LabVIEW software to acquire reliable data by conducting real-time analysis and applying various robot control algorithms to dramatically reduce development time.
  • Cutting Edge (technology has been on the market for < 2 years)
  • Industrial Wearables
    Industrial wearable devices are tools designed to improve workplace productivity, safety, and efficiency in sectors such as manufacturing, logistics, and mining. These devices collect data in real time, track activities, provide alerts, and provide customized experiences depending on the users' needs and organizational objectives. They are typically designed for specific situations or industry verticals, as opposed to consumer wearables which are often general in function. Industrial wearables can be designed to aid a worker in performing specific tasks or to measure health parameters for working in dangerous environments. In addition to performing a specific function for their wearer, the devices can be linked to enterprise systems. For example, linking wearables worn by employees in hazardous environments to employee welfare programs can be used to track and provide evidence of the wellbeing of employees, thereby reducing health insurance costs.
© 2020 IoT ONE