Download PDF
Dunelm's Digital Transformation: Enhancing Ecommerce Speed and Security with Fastly
Technology Category
- Infrastructure as a Service (IaaS) - Cloud Middleware & Microservices
- Platform as a Service (PaaS) - Application Development Platforms
Applicable Industries
- Construction & Infrastructure
- Transportation
Applicable Functions
- Logistics & Transportation
- Product Research & Development
Use Cases
- Last Mile Delivery
- Traffic Monitoring
Services
- Cloud Planning, Design & Implementation Services
- System Integration
The Challenge
Dunelm, one of the largest home furnishings and accessory retailers in the U.K., was facing challenges with its ecommerce platform. The company, which offers hundreds of thousands of products online and operates over 170 brick-and-mortar superstores, was looking to support a major digital transformation initiative. The goal was to increase speed for their shoppers across web and mobile storefronts, enhance security, deliver site updates faster at scale, and augment an infrastructure-as-code strategy. In early 2017, Dunelm undertook a major re-platforming initiative that would allow engineering teams to leverage the many advantages of cloud technologies. However, during the new stack rollout, a major incident occurred which affected their Google Product Listings Advertisements, impacting the team’s ability to sell products on their new platform.
About The Customer
Dunelm is one of the largest home furnishings and accessory retailers in the U.K. The company offers hundreds of thousands of products on their ecommerce site as well as over 170 brick-and-mortar superstores across the country. Dunelm also operates its own home delivery system and maintains a nationwide fleet of delivery trucks. To keep the business running smoothly, over 200 engineers build and manage a portfolio of applications, including a robust ecommerce site and a suite of internal tools. Dunelm’s engineering organization is split into small, autonomous teams based in the U.K. and Portugal. The platform team is a shared service that provides DevOps, automation, site reliability, tooling, infrastructure, as well as other services that they rely on.
The Solution
To address these challenges, Dunelm switched to Fastly, a modern content delivery network. The new headless and serverless platform, with API-driven and microservices architecture, was rolled out in October 2019. To align with their new infrastructure-as-code strategy, the platform team sought to consolidate content delivery, with the goals enabling the wider engineering organization to be more agile and responsive to business needs. During the new stack rollout, the team decided to route 100% of traffic through Fastly right away. Fastly’s edge computing technology is highly configurable and enables Dunelm teams to harness the power of the edge to deliver innovative and personalized customer experiences. Fastly’s platform simplifies management of content delivery in one unified place, which standardizes CDN services across the organization and improves collaboration.
Operational Impact
Quantitative Benefit
Related Case Studies.
Case Study
IoT System for Tunnel Construction
The Zenitaka Corporation ('Zenitaka') has two major business areas: its architectural business focuses on structures such as government buildings, office buildings, and commercial facilities, while its civil engineering business is targeted at structures such as tunnels, bridges and dams. Within these areas, there presented two issues that have always persisted in regard to the construction of mountain tunnels. These issues are 'improving safety" and "reducing energy consumption". Mountain tunnels construction requires a massive amount of electricity. This is because there are many kinds of electrical equipment being used day and night, including construction machinery, construction lighting, and ventilating fan. Despite this, the amount of power consumption is generally not tightly managed. In many cases, the exact amount of power consumption is only ascertained when the bill from the power company becomes available. Sometimes, corporations install demand-monitoring equipment to help curb the maximum power demanded. However, even in these cases, the devices only allow the total volume of power consumption to be ascertained, or they may issue warnings to prevent the contracted volume of power from being exceeded. In order to tackle the issue of reducing power consumption, it was first necessary to obtain an accurate breakdown of how much power was being used in each particular area. In other words, we needed to be able to visualize the amount of power being consumed. Safety, was also not being managed very rigorously. Even now, tunnel construction sites often use a 'name label' system for managing entry into the work site. Specifically, red labels with white reverse sides that bear the workers' names on both sides are displayed at the tunnel work site entrance. The workers themselves then flip the name label to the appropriate side when entering or exiting from the work site to indicate whether or not they are working inside the tunnel at any given time. If a worker forgets to flip his or her name label when entering or exiting from the tunnel, management cannot be performed effectively. In order to tackle the challenges mentioned above, Zenitaka decided to build a system that could improve the safety of tunnel construction as well as reduce the amount of power consumed. In other words, this new system would facilitate a clear picture of which workers were working in each location at the mountain tunnel construction site, as well as which processes were being carried out at those respective locations at any given time. The system would maintain the safety of all workers while also carefully controlling the electrical equipment to reduce unnecessary power consumption. Having decided on the concept, our next concern was whether there existed any kind of robust hardware that would not break down at the construction work site, that could move freely in response to changes in the working environment, and that could accurately detect workers and vehicles using radio frequency identification (RFID). Given that this system would involve many components that were new to Zenitaka, we decided to enlist the cooperation of E.I.Sol Co., Ltd. ('E.I.Sol') as our joint development partner, as they had provided us with a highly practical proposal.
Case Study
Airport SCADA Systems Improve Service Levels
Modern airports are one of the busiest environments on Earth and rely on process automation equipment to ensure service operators achieve their KPIs. Increasingly airport SCADA systems are being used to control all aspects of the operation and associated facilities. This is because unplanned system downtime can cost dearly, both in terms of reduced revenues and the associated loss of customer satisfaction due to inevitable travel inconvenience and disruption.
Case Study
IoT-based Fleet Intelligence Innovation
Speed to market is precious for DRVR, a rapidly growing start-up company. With a business model dependent on reliable mobile data, managers were spending their lives trying to negotiate data roaming deals with mobile network operators in different countries. And, even then, service quality was a constant concern.
Case Study
Digitize Railway with Deutsche Bahn
To reduce maintenance costs and delay-causing failures for Deutsche Bahn. They need manual measurements by a position measurement system based on custom-made MEMS sensor clusters, which allow autonomous and continuous monitoring with wireless data transmission and long battery. They were looking for data pre-processing solution in the sensor and machine learning algorithms in the cloud so as to detect critical wear.
Case Study
Cold Chain Transportation and Refrigerated Fleet Management System
1) Create a digital connected transportation solution to retrofit cold chain trailers with real-time tracking and controls. 2) Prevent multi-million dollar losses due to theft or spoilage. 3) Deliver a digital chain-of-custody solution for door to door load monitoring and security. 4) Provide a trusted multi-fleet solution in a single application with granular data and access controls.
Case Study
Vehicle Fleet Analytics
Organizations frequently implement a maintenance strategy for their fleets of vehicles using a combination of time and usage based maintenance schedules. While effective as a whole, time and usage based schedules do not take into account driving patterns, environmental factors, and sensors currently deployed within the vehicle measuring crank voltage, ignition voltage, and acceleration, all of which have a significant influence on the overall health of the vehicle.In a typical fleet, a large percentage of road calls are related to electrical failure, with battery failure being a common cause. Battery failures result in unmet service agreement levels and costly re-adjustment of scheduled to provide replacement vehicles. To reduce the impact of unplanned maintenance, the transportation logistics company was interested in a trial of C3 Vehicle Fleet Analytics.