Download PDF
Real-Time Air Quality Monitoring with IoT and Cloud Infrastructure
Technology Category
- Application Infrastructure & Middleware - Data Visualization
- Networks & Connectivity - MQTT
Applicable Industries
- Cement
- Construction & Infrastructure
Applicable Functions
- Logistics & Transportation
- Quality Assurance
Use Cases
- Fleet Management
- Real-Time Location System (RTLS)
Services
- Cloud Planning, Design & Implementation Services
- System Integration
The Challenge
SS Global, a firm offering consultancy and IoT integration services, faced a challenge in developing a real-time, detailed picture of the Air Quality Index (AQI) throughout a metropolitan region. They utilized IoT sensor data on temperature, humidity, and concentrations of particulate matter and atmospheric gases. The engineers needed the ability to play back historical data in real time or faster to examine and understand trends and causal relationships between weather, AQI, and other factors. It was also critical for the system to flag irregularities and anomalies in AQI and atmospheric changes that could indicate future problems affecting the local population.
About The Customer
SS Global is a firm that offers consultancy and Internet of Things (IoT) integration services to implement complete supply chain solutions and develop unique, innovative applications for clients. Their clients are engaged in managing virtually any kind of resource, including personnel, vehicles, raw materials, manufacturing processes, logistics systems, and customer service teams. SS Global's asset monitoring tools support real-time access to time-critical data and provide in-depth visibility into key performance indicators, location data, and operational anomalies throughout the entire ecosystem.
The Solution
Altair collaborated with Oracle to develop a solution using Oracle Cloud Infrastructure (OCI). The engineers used the MQTT messaging protocol to bring in data from IoT sensors in the field. The data stream contained both latitudinal and longitudinal values for each sensor, along with data on particulate matter, atmospheric conditions, and gas concentrations. Altair Panopticon data visualization software provided the native data connectivity and required dashboarding tools, while OCI provided cloud-based compute and storage infrastructure and AI Services (Anomaly Detection Service) to generate accurate predictions and produce alerts when sensor metric values exceeded normal values. The team built a series of dashboards that allowed users to view AQI as time series graphs and filter by time intervals and regions of interest. The first practical application of the analytics system is fleet management for municipal buses.
Operational Impact
Related Case Studies.
Case Study
System 800xA at Indian Cement Plants
Chettinad Cement recognized that further efficiencies could be achieved in its cement manufacturing process. It looked to investing in comprehensive operational and control technologies to manage and derive productivity and energy efficiency gains from the assets on Line 2, their second plant in India.
Case Study
IoT System for Tunnel Construction
The Zenitaka Corporation ('Zenitaka') has two major business areas: its architectural business focuses on structures such as government buildings, office buildings, and commercial facilities, while its civil engineering business is targeted at structures such as tunnels, bridges and dams. Within these areas, there presented two issues that have always persisted in regard to the construction of mountain tunnels. These issues are 'improving safety" and "reducing energy consumption". Mountain tunnels construction requires a massive amount of electricity. This is because there are many kinds of electrical equipment being used day and night, including construction machinery, construction lighting, and ventilating fan. Despite this, the amount of power consumption is generally not tightly managed. In many cases, the exact amount of power consumption is only ascertained when the bill from the power company becomes available. Sometimes, corporations install demand-monitoring equipment to help curb the maximum power demanded. However, even in these cases, the devices only allow the total volume of power consumption to be ascertained, or they may issue warnings to prevent the contracted volume of power from being exceeded. In order to tackle the issue of reducing power consumption, it was first necessary to obtain an accurate breakdown of how much power was being used in each particular area. In other words, we needed to be able to visualize the amount of power being consumed. Safety, was also not being managed very rigorously. Even now, tunnel construction sites often use a 'name label' system for managing entry into the work site. Specifically, red labels with white reverse sides that bear the workers' names on both sides are displayed at the tunnel work site entrance. The workers themselves then flip the name label to the appropriate side when entering or exiting from the work site to indicate whether or not they are working inside the tunnel at any given time. If a worker forgets to flip his or her name label when entering or exiting from the tunnel, management cannot be performed effectively. In order to tackle the challenges mentioned above, Zenitaka decided to build a system that could improve the safety of tunnel construction as well as reduce the amount of power consumed. In other words, this new system would facilitate a clear picture of which workers were working in each location at the mountain tunnel construction site, as well as which processes were being carried out at those respective locations at any given time. The system would maintain the safety of all workers while also carefully controlling the electrical equipment to reduce unnecessary power consumption. Having decided on the concept, our next concern was whether there existed any kind of robust hardware that would not break down at the construction work site, that could move freely in response to changes in the working environment, and that could accurately detect workers and vehicles using radio frequency identification (RFID). Given that this system would involve many components that were new to Zenitaka, we decided to enlist the cooperation of E.I.Sol Co., Ltd. ('E.I.Sol') as our joint development partner, as they had provided us with a highly practical proposal.
Case Study
Splunk Partnership Ties Together Big Data & IoT Services
Splunk was faced with the need to meet emerging customer demands for interfacing IoT projects to its suite of services. The company required an IoT partner that would be able to easily and quickly integrate with its Splunk Enterprise platform, rather than allocating development resources and time to building out an IoT interface and application platform.
Case Study
Bridge monitoring in Hamburg Port
Kattwyk Bridge is used for both rail and road transport, and it has played an important role in the Port of Hamburg since 1973. However, the increasing pressure from traffic requires a monitoring solution. The goal of the project is to assess in real-time the bridge's status and dynamic responses to traffic and lift processes.
Case Study
Bellas Landscaping
Leading landscaping firm serving central Illinois streamlines operations with Samsara’s real-time fleet tracking solution: • 30+ vehicle fleet includes International Terrastar dump trucks and flatbeds, medium- and light-duty pickups from Ford and Chevrolet. Winter fleet includes of snow plows and salters.