下载PDF
Implementing ANSYS FSI Solution for Advanced Cardiology Research at Colorado Health Science Center
技术
- 分析与建模 - 数字孪生/模拟
- 传感器 - 液位传感器
适用行业
- 医疗保健和医院
- 生命科学
适用功能
- 产品研发
用例
- 数字孪生
- 虚拟现实
挑战
科罗拉多大学健康科学中心的心脏病学研究工程师正在寻求更深入地了解肺动脉高压 (PAH),这种疾病的特征是将缺氧血液从心脏右心室输送到小动脉的血管持续高压。在肺部。随着时间的推移,PAH 导致的负荷增加可能导致过早心力衰竭和死亡。目前诊断和评估 PAH 的临床方法是侵入性的,仅考虑脉管系统的平均流速和压降。面临的挑战是模拟瞬态血流动力学和动脉运动,这需要针对耦合的固体和流体域的解决方案。几何定义源自医学成像,由于超弹性材料和复杂的约束关系,脉管系统的本构建模非常复杂。此外,流体边界条件不能简单地表征。
关于客户
科罗拉多大学健康科学中心是美国生物医学研究领域的领先机构。该中心的心脏病学研究工程师致力于推进疾病的基础知识和开发新的疾病诊断方法。他们使用不同复杂度的基于力学的模型来深入了解各种疾病,包括肺动脉高压(PAH)。他们的工作对于了解 PAH 的进展和改善对潜在治疗结果的预测至关重要。
解决方案
ANSYS FSI 解决方案的实施为流体结构相互作用的耦合仿真提供了完整的解决方案。 ANSYS® ICEM CFD™ Hexa 用于为根据成像数据确定的几何形状提供高质量的四边形和六边形单元壳和体积网格。 ANSYS FEA 实体建模功能允许定义超弹性材料模型和复杂的约束方程。 ANSYS CFX 提供了强大的 CFD 求解器,与 FEA 和关键功能(例如允许定义各种生理边界条件的表达语言)相结合。这一全面的解决方案使研究人员能够更好地了解 PAH 所涉及的瞬态物理学,并深入了解血管僵硬度的影响。
运营影响
相关案例.
Case Study
Hospital Inventory Management
The hospital supply chain team is responsible for ensuring that the right medical supplies are readily available to clinicians when and where needed, and to do so in the most efficient manner possible. However, many of the systems and processes in use at the cancer center for supply chain management were not best suited to support these goals. Barcoding technology, a commonly used method for inventory management of medical supplies, is labor intensive, time consuming, does not provide real-time visibility into inventory levels and can be prone to error. Consequently, the lack of accurate and real-time visibility into inventory levels across multiple supply rooms in multiple hospital facilities creates additional inefficiency in the system causing over-ordering, hoarding, and wasted supplies. Other sources of waste and cost were also identified as candidates for improvement. Existing systems and processes did not provide adequate security for high-cost inventory within the hospital, which was another driver of cost. A lack of visibility into expiration dates for supplies resulted in supplies being wasted due to past expiry dates. Storage of supplies was also a key consideration given the location of the cancer center’s facilities in a dense urban setting, where space is always at a premium. In order to address the challenges outlined above, the hospital sought a solution that would provide real-time inventory information with high levels of accuracy, reduce the level of manual effort required and enable data driven decision making to ensure that the right supplies were readily available to clinicians in the right location at the right time.
Case Study
Gas Pipeline Monitoring System for Hospitals
This system integrator focuses on providing centralized gas pipeline monitoring systems for hospitals. The service they provide makes it possible for hospitals to reduce both maintenance and labor costs. Since hospitals may not have an existing network suitable for this type of system, GPRS communication provides an easy and ready-to-use solution for remote, distributed monitoring systems System Requirements - GPRS communication - Seamless connection with SCADA software - Simple, front-end control capability - Expandable I/O channels - Combine AI, DI, and DO channels
Case Study
Driving Digital Transformations for Vitro Diagnostic Medical Devices
Diagnostic devices play a vital role in helping to improve healthcare delivery. In fact, an estimated 60 percent of the world’s medical decisions are made with support from in vitrodiagnostics (IVD) solutions, such as those provided by Roche Diagnostics, an industry leader. As the demand for medical diagnostic services grows rapidly in hospitals and clinics across China, so does the market for IVD solutions. In addition, the typically high cost of these diagnostic devices means that comprehensive post-sales services are needed. Wanteed to improve three portions of thr IVD:1. Remotely monitor and manage IVD devices as fixed assets.2. Optimizing device availability with predictive maintenance.3. Recommending the best IVD solution for a customer’s needs.
Case Study
HaemoCloud Global Blood Management System
1) Deliver a connected digital product system to protect and increase the differentiated value of Haemonetics blood and plasma solutions. 2) Improve patient outcomes by increasing the efficiency of blood supply flows. 3) Navigate and satisfy a complex web of global regulatory compliance requirements. 4) Reduce costly and labor-intensive maintenance procedures.
Case Study
Harnessing real-time data to give a holistic picture of patient health
Every day, vast quantities of data are collected about patients as they pass through health service organizations—from operational data such as treatment history and medications to physiological data captured by medical devices. The insights hidden within this treasure trove of data can be used to support more personalized treatments, more accurate diagnosis and more advanced preparative care. But since the information is generated faster than most organizations can consume it, unlocking the power of this big data can be a struggle. This type of predictive approach not only improves patient care—it also helps to reduce costs, because in the healthcare industry, prevention is almost always more cost-effective than treatment. However, collecting, analyzing and presenting these data-streams in a way that clinicians can easily understand can pose a significant technical challenge.