Download PDF
Decode Health Unlocks Better Patient Outcomes with AI
Technology Category
- Analytics & Modeling - Machine Learning
- Analytics & Modeling - Predictive Analytics
Applicable Industries
- Healthcare & Hospitals
Applicable Functions
- Product Research & Development
- Quality Assurance
Use Cases
- Predictive Maintenance
- Remote Patient Monitoring
Services
- Data Science Services
The Challenge
Decode Health, a healthcare AI company, has always relied on predictive analytics to unlock discoveries using data. However, in the early days, modeling was a slow, manual task. Analyzing a single dataset could take two to three weeks, with two to three data team members working around the clock. This exhaustive manual effort included considerable time preparing data, waiting on models, recalibrating, and waiting again. The company needed a solution that could streamline this process and deliver accurate results more quickly and cost-effectively.
About The Customer
Decode Health is a healthcare AI company that serves as the outsourced innovation team to organizations ranging from diagnostic companies to pharma. The company helps its partners quickly and cost-effectively unlock discoveries using their data. Current projects include genomic data creation, RNA diagnostics, and population health analytics. The work of Decode Health is predictive, proactive, and extensible to the ever-evolving healthcare ecosystem. Over the course of a decade, the team leading Decode has built a framework leveraging a variety of tools, including advanced machine learning approaches, to deliver accurate results.
The Solution
Decode Health turned to DataRobot AI Cloud for automated machine learning to help predict health outcomes and drive more proactive, less costly care. DataRobot AI Cloud streamlines predictive analytics end to end, freeing the team to focus more strategically on data elements and understanding outcomes. With DataRobot AI Cloud, the company enhanced its framework with automated machine learning that streamlines predictive analytics end to end. In the past, a comprehensive analysis of a single dataset could take weeks, with multiple data team members working around the clock; now, they complete the same task in a matter of days.
Operational Impact
Quantitative Benefit
Related Case Studies.
Case Study
Hospital Inventory Management
The hospital supply chain team is responsible for ensuring that the right medical supplies are readily available to clinicians when and where needed, and to do so in the most efficient manner possible. However, many of the systems and processes in use at the cancer center for supply chain management were not best suited to support these goals. Barcoding technology, a commonly used method for inventory management of medical supplies, is labor intensive, time consuming, does not provide real-time visibility into inventory levels and can be prone to error. Consequently, the lack of accurate and real-time visibility into inventory levels across multiple supply rooms in multiple hospital facilities creates additional inefficiency in the system causing over-ordering, hoarding, and wasted supplies. Other sources of waste and cost were also identified as candidates for improvement. Existing systems and processes did not provide adequate security for high-cost inventory within the hospital, which was another driver of cost. A lack of visibility into expiration dates for supplies resulted in supplies being wasted due to past expiry dates. Storage of supplies was also a key consideration given the location of the cancer center’s facilities in a dense urban setting, where space is always at a premium. In order to address the challenges outlined above, the hospital sought a solution that would provide real-time inventory information with high levels of accuracy, reduce the level of manual effort required and enable data driven decision making to ensure that the right supplies were readily available to clinicians in the right location at the right time.
Case Study
Gas Pipeline Monitoring System for Hospitals
This system integrator focuses on providing centralized gas pipeline monitoring systems for hospitals. The service they provide makes it possible for hospitals to reduce both maintenance and labor costs. Since hospitals may not have an existing network suitable for this type of system, GPRS communication provides an easy and ready-to-use solution for remote, distributed monitoring systems System Requirements - GPRS communication - Seamless connection with SCADA software - Simple, front-end control capability - Expandable I/O channels - Combine AI, DI, and DO channels
Case Study
Driving Digital Transformations for Vitro Diagnostic Medical Devices
Diagnostic devices play a vital role in helping to improve healthcare delivery. In fact, an estimated 60 percent of the world’s medical decisions are made with support from in vitrodiagnostics (IVD) solutions, such as those provided by Roche Diagnostics, an industry leader. As the demand for medical diagnostic services grows rapidly in hospitals and clinics across China, so does the market for IVD solutions. In addition, the typically high cost of these diagnostic devices means that comprehensive post-sales services are needed. Wanteed to improve three portions of thr IVD:1. Remotely monitor and manage IVD devices as fixed assets.2. Optimizing device availability with predictive maintenance.3. Recommending the best IVD solution for a customer’s needs.
Case Study
HaemoCloud Global Blood Management System
1) Deliver a connected digital product system to protect and increase the differentiated value of Haemonetics blood and plasma solutions. 2) Improve patient outcomes by increasing the efficiency of blood supply flows. 3) Navigate and satisfy a complex web of global regulatory compliance requirements. 4) Reduce costly and labor-intensive maintenance procedures.
Case Study
Harnessing real-time data to give a holistic picture of patient health
Every day, vast quantities of data are collected about patients as they pass through health service organizations—from operational data such as treatment history and medications to physiological data captured by medical devices. The insights hidden within this treasure trove of data can be used to support more personalized treatments, more accurate diagnosis and more advanced preparative care. But since the information is generated faster than most organizations can consume it, unlocking the power of this big data can be a struggle. This type of predictive approach not only improves patient care—it also helps to reduce costs, because in the healthcare industry, prevention is almost always more cost-effective than treatment. However, collecting, analyzing and presenting these data-streams in a way that clinicians can easily understand can pose a significant technical challenge.