Download PDF
Leveraging HyperWorks for Advanced Human Body Models in Vehicle Crash Simulations
Technology Category
- Analytics & Modeling - Digital Twin / Simulation
- Robots - Autonomous Guided Vehicles (AGV)
Applicable Industries
- Automotive
- Chemicals
Applicable Functions
- Product Research & Development
- Quality Assurance
Use Cases
- Onsite Human Safety Management
- Virtual Reality
Services
- System Integration
The Challenge
Wake Forest Baptist Medical Center, a leading research university in biomedical sciences and bioengineering, was tasked with developing highly detailed, finite-element human body models for vehicle crash simulation. The Center of Injury Biomechanics (CIB) at the university was to investigate injury mechanisms following trauma resulting from vehicle crashes to develop a greater understanding of human tolerance to injury and to engineer enhanced safety countermeasures. The challenge was to mathematically quantify fundamental human body organs, skeletal members, and body extremities that are subject to trauma. The resulting medical image data had to accurately represent a range of vehicle occupants: adults (male & female), children (3-6 years old), and infants. The human body data then had to be discretized to generate accurate finite element (FE) models of the varied human body systems. These models then had to be integrated to formulate a model of the entire human body, which then had to be validated in vehicle crashworthiness simulations with occupant and pedestrian impact conditions.
About The Customer
Wake Forest Baptist Medical Center is a leading research university in biomedical sciences and bioengineering. The Center of Injury Biomechanics (CIB) in the School of Medicine at Wake Forest Baptist investigates injury mechanisms following trauma resulting from vehicle crash to develop a greater understanding of human tolerance to injury and to engineer enhanced safety countermeasures. Since 2006, Drs. Joel Stitzel and Scott Gayzik of the CIB have been principle investigators for the Global Human Body Modeling Consortium(GHBMC), an international consortium of automakers and suppliers working with research universities and government agencies to advance human body modeling technologies for crash simulation.
The Solution
The Global Human Body Modeling Consortium (GHBMC) applied Altair HyperMesh and its HyperMorph module to develop detailed finite element models based on extensive scanned data of human body organs, tissues, and skeletal systems. The data was developed under the direction of established GHBMC Centers of Expertise (COE) at selected universities. Each of these Centers had responsibility for CAD and finite element modeling of specific regions of the human body. An additional COE was established to integrate data and finite element models from each subsystem into a full body model. The GHBMC selected the Wake Forest University CIB to complete the extensive integration work required for the Total Human Body COE. Altair made available the entire HyperWorks suite of CAE tools to enable the finite element and crashworthiness analysis-related work for each COE. HyperMesh was applied for finite element modeling of human body CAD data, while RADIOSS was applied for vehicle crash simulation validation. The Wake Forest Baptist team also developed a modeling scaling approach to rapidly develop other sized models, leveraging the large amount of existing data for the M50 development, including external anthropometry and medical imaging data.
Operational Impact
Quantitative Benefit
Related Case Studies.
Case Study
Honeywell - Tata Chemicals Improves Data Accessibility with OneWireless
Tata was facing data accessibility challenges in the cement plant control room tapping signals from remote process control areas and other distant locations, including the gas scrubber. Tata needed a wireless solution to extend its control network securely to remote locations that would also provide seamless communication with existing control applications.
Case Study
Integral Plant Maintenance
Mercedes-Benz and his partner GAZ chose Siemens to be its maintenance partner at a new engine plant in Yaroslavl, Russia. The new plant offers a capacity to manufacture diesel engines for the Russian market, for locally produced Sprinter Classic. In addition to engines for the local market, the Yaroslavl plant will also produce spare parts. Mercedes-Benz Russia and his partner needed a service partner in order to ensure the operation of these lines in a maintenance partnership arrangement. The challenges included coordinating the entire maintenance management operation, in particular inspections, corrective and predictive maintenance activities, and the optimizing spare parts management. Siemens developed a customized maintenance solution that includes all electronic and mechanical maintenance activities (Integral Plant Maintenance).
Case Study
Advanced Elastomer Systems Upgrades Production
In order to maintain its share of the international market for thermoplastic elastomers AES recently expanded its Florida plant by adding a new production line. While the existing lines were operating satisfactorily using a PROVOX distributed control system with traditional analog I/O, AES wanted advanced technology on the new line for greater economy, efficiency, and reliability. AES officials were anxious to get this line into production to meet incoming orders, but two hurricanes slowed construction.