Download PDF
OhioHealth: First-of-a-Kind network solution analyzes and improves compliance with hospital hand-washing protocols
Technology Category
- Networks & Connectivity - RFID
- Analytics & Modeling - Real Time Analytics
Applicable Industries
- Healthcare & Hospitals
Applicable Functions
- Quality Assurance
Use Cases
- Personnel Tracking & Monitoring
- Regulatory Compliance Monitoring
Services
- Data Science Services
- System Integration
The Challenge
Every year, nearly 2 million patients in the US contract healthcare-associated infections (HAIs), despite the fact that proper hand washing can easily prevent these infections. OhioHealth, a nonprofit, faith-based system of hospitals and healthcare providers serving 40 counties around Columbus, needed a systematic way to monitor, analyze, and improve compliance with hand-washing and sanitizing procedures. The challenge was to find a solution that could provide real-time monitoring and analytics to spot noncompliance patterns quickly and implement remedial action to lower the risk of HAIs.
About The Customer
OhioHealth is a nonprofit, faith-based system of hospitals and healthcare providers. The organization serves 40 counties around Columbus, providing a wide range of health services to the community. As a healthcare provider, OhioHealth is committed to maintaining the highest standards of cleanliness and hygiene in its facilities. This commitment extends to ensuring that all staff members adhere to proper hand-washing and sanitizing procedures, which are crucial in preventing healthcare-associated infections (HAIs). However, monitoring and enforcing these procedures can be challenging, especially in a large healthcare system like OhioHealth.
The Solution
OhioHealth partnered with IBM to implement a first-of-its-kind network solution that monitors and analyzes compliance with hand-washing protocols. The solution uses a mesh network of wireless radio frequency identification (RFID)-enabled readers or 'motes' mounted on soap and sanitizer dispensers. These motes collect data on hand-washing practices, which is then analyzed to provide insight into compliance levels among hospital staff. Noncompliance patterns are quickly identified, allowing OhioHealth to take remedial action and lower the risk of HAIs. The solution also includes the planned implementation of IBM Cognos Business Intelligence V10 for further data analysis and insight.
Operational Impact
Quantitative Benefit
Related Case Studies.
Case Study
Hospital Inventory Management
The hospital supply chain team is responsible for ensuring that the right medical supplies are readily available to clinicians when and where needed, and to do so in the most efficient manner possible. However, many of the systems and processes in use at the cancer center for supply chain management were not best suited to support these goals. Barcoding technology, a commonly used method for inventory management of medical supplies, is labor intensive, time consuming, does not provide real-time visibility into inventory levels and can be prone to error. Consequently, the lack of accurate and real-time visibility into inventory levels across multiple supply rooms in multiple hospital facilities creates additional inefficiency in the system causing over-ordering, hoarding, and wasted supplies. Other sources of waste and cost were also identified as candidates for improvement. Existing systems and processes did not provide adequate security for high-cost inventory within the hospital, which was another driver of cost. A lack of visibility into expiration dates for supplies resulted in supplies being wasted due to past expiry dates. Storage of supplies was also a key consideration given the location of the cancer center’s facilities in a dense urban setting, where space is always at a premium. In order to address the challenges outlined above, the hospital sought a solution that would provide real-time inventory information with high levels of accuracy, reduce the level of manual effort required and enable data driven decision making to ensure that the right supplies were readily available to clinicians in the right location at the right time.
Case Study
Gas Pipeline Monitoring System for Hospitals
This system integrator focuses on providing centralized gas pipeline monitoring systems for hospitals. The service they provide makes it possible for hospitals to reduce both maintenance and labor costs. Since hospitals may not have an existing network suitable for this type of system, GPRS communication provides an easy and ready-to-use solution for remote, distributed monitoring systems System Requirements - GPRS communication - Seamless connection with SCADA software - Simple, front-end control capability - Expandable I/O channels - Combine AI, DI, and DO channels
Case Study
Driving Digital Transformations for Vitro Diagnostic Medical Devices
Diagnostic devices play a vital role in helping to improve healthcare delivery. In fact, an estimated 60 percent of the world’s medical decisions are made with support from in vitrodiagnostics (IVD) solutions, such as those provided by Roche Diagnostics, an industry leader. As the demand for medical diagnostic services grows rapidly in hospitals and clinics across China, so does the market for IVD solutions. In addition, the typically high cost of these diagnostic devices means that comprehensive post-sales services are needed. Wanteed to improve three portions of thr IVD:1. Remotely monitor and manage IVD devices as fixed assets.2. Optimizing device availability with predictive maintenance.3. Recommending the best IVD solution for a customer’s needs.
Case Study
HaemoCloud Global Blood Management System
1) Deliver a connected digital product system to protect and increase the differentiated value of Haemonetics blood and plasma solutions. 2) Improve patient outcomes by increasing the efficiency of blood supply flows. 3) Navigate and satisfy a complex web of global regulatory compliance requirements. 4) Reduce costly and labor-intensive maintenance procedures.
Case Study
Harnessing real-time data to give a holistic picture of patient health
Every day, vast quantities of data are collected about patients as they pass through health service organizations—from operational data such as treatment history and medications to physiological data captured by medical devices. The insights hidden within this treasure trove of data can be used to support more personalized treatments, more accurate diagnosis and more advanced preparative care. But since the information is generated faster than most organizations can consume it, unlocking the power of this big data can be a struggle. This type of predictive approach not only improves patient care—it also helps to reduce costs, because in the healthcare industry, prevention is almost always more cost-effective than treatment. However, collecting, analyzing and presenting these data-streams in a way that clinicians can easily understand can pose a significant technical challenge.