Download PDF
Turbomeca Streamlines Helicopter Engine Control Software Development with SCADE Suite
Technology Category
- Analytics & Modeling - Digital Twin / Simulation
Applicable Industries
- Equipment & Machinery
Applicable Functions
- Product Research & Development
- Quality Assurance
Use Cases
- Rapid Prototyping
- Virtual Prototyping & Product Testing
Services
- System Integration
- Testing & Certification
The Challenge
Turbomeca, a leading producer of helicopter engines, was facing challenges in developing the embedded software that runs the control system for each engine family. The model-based design approach they adopted used simulation tools for rapid prototyping, software testing, and verification. However, this approach required time-consuming manual coding, which could potentially introduce coding errors and inconsistencies between the code and the model. To keep pace with new innovations in helicopter technology and to remain compliant with DO-178B/C standards, Turbomeca needed tools that would help them code more efficiently, reduce errors, and improve code management.
About The Customer
Turbomeca, part of the Safran group, is the world’s leading producer of helicopter engines. Since its founding in 1938, the company has produced more than 70,000 engines. Turbomeca specializes in the design, production, sale, and support of low- to medium-power gas turbines to power helicopters. They are committed to designing new engines to match industry standards and the innovations of their helicopter manufacturing customers.
The Solution
To address these challenges, Turbomeca engineers developed the G4 software process. This process includes requirements management, model-based design, simulation, test automation, and qualified code generation. They incorporated the SCADE Suite into the process due to its efficient model checker, which enables them to run simulated test cases and detect problems early in the design phase. The suite’s reusable symbol library promotes reuse and design consistency within and across software projects. It also helps reduce the time and cost of development by enabling software teams to use the same formal language and methods.
Operational Impact
Quantitative Benefit
Related Case Studies.
Case Study
Smart Water Filtration Systems
Before working with Ayla Networks, Ozner was already using cloud connectivity to identify and solve water-filtration system malfunctions as well as to monitor filter cartridges for replacements.But, in June 2015, Ozner executives talked with Ayla about how the company might further improve its water systems with IoT technology. They liked what they heard from Ayla, but the executives needed to be sure that Ayla’s Agile IoT Platform provided the security and reliability Ozner required.
Case Study
IoT enabled Fleet Management with MindSphere
In view of growing competition, Gämmerler had a strong need to remain competitive via process optimization, reliability and gentle handling of printed products, even at highest press speeds. In addition, a digitalization initiative also included developing a key differentiation via data-driven services offers.
Case Study
Predictive Maintenance for Industrial Chillers
For global leaders in the industrial chiller manufacturing, reliability of the entire production process is of the utmost importance. Chillers are refrigeration systems that produce ice water to provide cooling for a process or industrial application. One of those leaders sought a way to respond to asset performance issues, even before they occur. The intelligence to guarantee maximum reliability of cooling devices is embedded (pre-alarming). A pre-alarming phase means that the cooling device still works, but symptoms may appear, telling manufacturers that a failure is likely to occur in the near future. Chillers who are not internet connected at that moment, provide little insight in this pre-alarming phase.
Case Study
Premium Appliance Producer Innovates with Internet of Everything
Sub-Zero faced the largest product launch in the company’s history:It wanted to launch 60 new products as scheduled while simultaneously opening a new “greenfield” production facility, yet still adhering to stringent quality requirements and manage issues from new supply-chain partners. A the same time, it wanted to increase staff productivity time and collaboration while reducing travel and costs.
Case Study
Integration of PLC with IoT for Bosch Rexroth
The application arises from the need to monitor and anticipate the problems of one or more machines managed by a PLC. These problems, often resulting from the accumulation over time of small discrepancies, require, when they occur, ex post technical operations maintenance.
Case Study
Robot Saves Money and Time for US Custom Molding Company
Injection Technology (Itech) is a custom molder for a variety of clients that require precision plastic parts for such products as electric meter covers, dental appliance cases and spools. With 95 employees operating 23 molding machines in a 30,000 square foot plant, Itech wanted to reduce man hours and increase efficiency.