下载PDF
Improved health risk modeling—improved member engagement results
技术
- 分析与建模 - 预测分析
- 分析与建模 - 数据挖掘
- 分析与建模 - 实时分析
适用行业
- 医疗保健和医院
适用功能
- 质量保证
- 商业运营
用例
- 预测性维护
- 远程病人监护
- 监管合规监控
服务
- 数据科学服务
- 系统集成
- 培训
挑战
In the face of rising medical claims costs, payers are looking to improve member engagement in their own health and minimize unnecessary utilization of the health care system. However, the Affordable Care Act (ACA) and the creation of Health Insurance Exchanges have led to millions of consumers accessing health benefits for the first time and possessing little or no historical, clinical or claims data. The lack of medical history makes risk modeling and effective member engagement particularly difficult. This Case Study seeks to answer the question, “Can socioeconomic data be used to help predict member health risk and inform improved member engagement strategies?” EveryMove (and their payer clients) need a comprehensive picture to determine population health risk and the ability to precisely target high-risk members with the appropriate engagement incentives. Always seeking to optimize the timing and accuracy of its member interventions, EveryMove places an extremely high value on predictive intelligence that provides insight into the health status and potential health risks of individuals. With so many new consumers lacking traditional data, like claims and clinical records, EveryMove chose to test and measure the ability of non-medical, socioeconomic data to fill in major gaps in member health profiles, and to accurately predict health risks.
关于客户
Founded in 2011, EveryMove offers strategies, products and services designed to get people to take the right actions for their health and—in a win-win for patients and health plans—spend less time in the health care system. EveryMove is a leader in tailoring the way health care payers engage members on an individual level to increase retention, minimize clinical and financial risk and improve member satisfaction. EveryMove specializes in member engagement, focusing on optimizing the timing and accuracy of its member interventions. The company places a high value on predictive intelligence that provides insight into the health status and potential health risks of individuals. EveryMove's goal is to create a comprehensive picture to determine population health risk and the ability to precisely target high-risk members with the appropriate engagement incentives.
解决方案
EveryMove began the search for a data partner with the understanding that some supplemental data providers are less reliable than others. Data that is limited in scope, incomplete, outdated and/or inaccurate offers limited potential for improving model accuracy or identifying additional costs and risks. The key to effectively integrating socioeconomic data to aid in predicting health outcomes is knowing which datasets enhance a model—and which simply add noise. That’s the expertise-and-experience sweet spot that LexisNexis® alone occupies. LexisNexis data scientists have examined a vast inventory of socioeconomic indicators to ascertain the potential each has to impact member health. After a thorough testing and refining process, their team has developed sophisticated prediction techniques that are independent of traditional health care data, and capable of revealing a picture of future risk that would otherwise go undiscovered. LexisNexis simply runs a health plan’s member file against the model to receive a score delivered at the individual member level. That score indicates the level of health risk that member poses over the next 12 months—and it can be used alone or in conjunction with other modeling or population platforms to identify candidates for proactive intervention, such as wellness programs and case management.
运营影响
数量效益
相关案例.
Case Study
Hospital Inventory Management
The hospital supply chain team is responsible for ensuring that the right medical supplies are readily available to clinicians when and where needed, and to do so in the most efficient manner possible. However, many of the systems and processes in use at the cancer center for supply chain management were not best suited to support these goals. Barcoding technology, a commonly used method for inventory management of medical supplies, is labor intensive, time consuming, does not provide real-time visibility into inventory levels and can be prone to error. Consequently, the lack of accurate and real-time visibility into inventory levels across multiple supply rooms in multiple hospital facilities creates additional inefficiency in the system causing over-ordering, hoarding, and wasted supplies. Other sources of waste and cost were also identified as candidates for improvement. Existing systems and processes did not provide adequate security for high-cost inventory within the hospital, which was another driver of cost. A lack of visibility into expiration dates for supplies resulted in supplies being wasted due to past expiry dates. Storage of supplies was also a key consideration given the location of the cancer center’s facilities in a dense urban setting, where space is always at a premium. In order to address the challenges outlined above, the hospital sought a solution that would provide real-time inventory information with high levels of accuracy, reduce the level of manual effort required and enable data driven decision making to ensure that the right supplies were readily available to clinicians in the right location at the right time.
Case Study
Gas Pipeline Monitoring System for Hospitals
This system integrator focuses on providing centralized gas pipeline monitoring systems for hospitals. The service they provide makes it possible for hospitals to reduce both maintenance and labor costs. Since hospitals may not have an existing network suitable for this type of system, GPRS communication provides an easy and ready-to-use solution for remote, distributed monitoring systems System Requirements - GPRS communication - Seamless connection with SCADA software - Simple, front-end control capability - Expandable I/O channels - Combine AI, DI, and DO channels
Case Study
Driving Digital Transformations for Vitro Diagnostic Medical Devices
Diagnostic devices play a vital role in helping to improve healthcare delivery. In fact, an estimated 60 percent of the world’s medical decisions are made with support from in vitrodiagnostics (IVD) solutions, such as those provided by Roche Diagnostics, an industry leader. As the demand for medical diagnostic services grows rapidly in hospitals and clinics across China, so does the market for IVD solutions. In addition, the typically high cost of these diagnostic devices means that comprehensive post-sales services are needed. Wanteed to improve three portions of thr IVD:1. Remotely monitor and manage IVD devices as fixed assets.2. Optimizing device availability with predictive maintenance.3. Recommending the best IVD solution for a customer’s needs.
Case Study
HaemoCloud Global Blood Management System
1) Deliver a connected digital product system to protect and increase the differentiated value of Haemonetics blood and plasma solutions. 2) Improve patient outcomes by increasing the efficiency of blood supply flows. 3) Navigate and satisfy a complex web of global regulatory compliance requirements. 4) Reduce costly and labor-intensive maintenance procedures.
Case Study
Harnessing real-time data to give a holistic picture of patient health
Every day, vast quantities of data are collected about patients as they pass through health service organizations—from operational data such as treatment history and medications to physiological data captured by medical devices. The insights hidden within this treasure trove of data can be used to support more personalized treatments, more accurate diagnosis and more advanced preparative care. But since the information is generated faster than most organizations can consume it, unlocking the power of this big data can be a struggle. This type of predictive approach not only improves patient care—it also helps to reduce costs, because in the healthcare industry, prevention is almost always more cost-effective than treatment. However, collecting, analyzing and presenting these data-streams in a way that clinicians can easily understand can pose a significant technical challenge.