下载PDF
Comsol > 实例探究 > Virtual Material Design in 3D Printing Makes Headway with Multiscale Modeling
Comsol  Logo

Virtual Material Design in 3D Printing Makes Headway with Multiscale Modeling

技术
  • 分析与建模 - 数字孪生/模拟
  • 分析与建模 - 预测分析
  • 功能应用 - 产品生命周期管理系统 (PLM)
适用功能
  • 产品研发
  • 质量保证
用例
  • 添加剂制造
  • 数字孪生
  • 质量预测分析
服务
  • 软件设计与工程服务
  • 系统集成
挑战
Anisotropic materials behave differently depending on the direction they are loaded, but current methods of material production offer limited control over anisotropy. This limitation makes it difficult to exploit the advantages of anisotropic materials for product design. Researchers at TNO aimed to develop a procedure for designing manufacturable anisotropic structures using stiffness and topology optimization techniques. They sought to create materials with specific properties, such as twice the stiffness in one planar direction compared to another, and to extend these capabilities to multimaterial structures. The challenge was to optimize the local distribution and orientation of materials at the microlevel and then scale these optimizations to larger devices while maintaining feasible computation times.
关于客户
The Netherlands Organization for Applied Scientific Research (TNO) is a prominent research institute that focuses on applied scientific research across various domains, including safety and security, energy, and manufacturing. TNO's work spans multiple subjects, and they are known for their innovative approaches to solving complex problems. The organization employs advanced techniques such as multiphysics simulation, multiscale modeling, and topology optimization to explore new frontiers in material design and additive manufacturing. TNO's research efforts are aimed at developing practical solutions that can be applied across different industries, making them a key player in the field of scientific research and technological innovation.
解决方案
Researchers at TNO used COMSOL Multiphysics® software to investigate and optimize the properties of anisotropic materials. They began by designing a single unit cell with specific stiffness characteristics and verified the simulation results with printed samples. The next step involved extending the simulation to multimaterial structures, optimizing the local distribution and orientation of materials to achieve desired properties. TNO implemented multiscale modeling to efficiently simulate both micromaterial and product scales simultaneously. This approach allowed them to design large, flexible organic LEDs (OLEDs) with improved light homogeneity by optimizing the metal grids in the transparent front-end electrodes. The team also applied their techniques to selective laser melting (SLM) 3D printing, developing unit cells that are stiff, printable, and contain holes for powder removal. They combined stiffness homogenization and topology optimization to create a polymer hammer handle with the correct stiffness and minimal material use, demonstrating the power and versatility of their approach.
运营影响
  • TNO successfully developed a procedure for designing manufacturable anisotropic structures using stiffness and topology optimization techniques.
  • The researchers optimized the local distribution and orientation of materials at the microlevel and scaled these optimizations to larger devices.
  • They implemented multiscale modeling to efficiently simulate both micromaterial and product scales simultaneously, improving the design process.
数量效益
  • The updates to the OLED design resulted in a 12% improvement in light homogeneity without compromising efficiency.

相关案例.

联系我们

欢迎与我们交流!

* Required
* Required
* Required
* Invalid email address
提交此表单,即表示您同意 IoT ONE 可以与您联系并分享洞察和营销信息。
不,谢谢,我不想收到来自 IoT ONE 的任何营销电子邮件。
提交

Thank you for your message!
We will contact you soon.