Download PDF
Paul Hewitt's Transformation into a Data-Driven Business with Fivetran & Databricks
Technology Category
- Analytics & Modeling - Machine Learning
- Platform as a Service (PaaS) - Application Development Platforms
Applicable Industries
- Construction & Infrastructure
- Retail
Applicable Functions
- Maintenance
- Sales & Marketing
Use Cases
- Predictive Maintenance
- Time Sensitive Networking
Services
- Cloud Planning, Design & Implementation Services
- Data Science Services
The Challenge
Paul Hewitt, a jewellery and accessory brand, was facing challenges in managing and analyzing its advertising spend due to the limitations of its existing tool, Supermetrics. The analytics team, consisting of three employees, had to manually enter data into spreadsheets to determine the most effective marketing channels, a process that was both time-consuming and prone to errors. To meet the needs of an increasingly complex supply chain, the company had invested in an ERP system, Microsoft Dynamics NAV, and began to make data available for analysis with Microsoft Power BI. However, the company wanted to take its data strategy to the next level by integrating data from across the business into one place on a cloud data platform, with the objective of transforming into a data-driven business.
About The Customer
Paul Hewitt is a renowned jewellery and accessory brand that was in the early stages of its online journey. The company was using Supermetrics for analyzing advertising spend but soon outgrew its capabilities. The analytics team was manually entering data from Supermetrics into spreadsheets to determine which channels were delivering the best return. To meet the needs of an increasingly complex supply chain, the company had invested in an ERP system, Microsoft Dynamics NAV, and began to make data available for analysis with Microsoft Power BI. The company's objective was to transform into a data-driven business by integrating data from across the business into one place on a cloud data platform.
The Solution
Paul Hewitt decided to use Databricks, a first-party Microsoft provider, as its data analytics platform. This was a natural choice as the company already had the Microsoft Azure cloud platform in place. Databricks helped eliminate data silos, enabling holistic analytics and data science, and setting the stage for future machine learning use cases. The company also used Azure and Delta Lake by Databricks for the data lake, and Power BI for visualization. To automate the pipeline from the data sources, the company chose Fivetran, an ELT provider, for its functionality and ease of use. Fivetran was set up to automatically load data from multiple advertising channel APIs into the data lake, providing better insights into marketing spend.
Operational Impact
Quantitative Benefit
Related Case Studies.
Case Study
IoT System for Tunnel Construction
The Zenitaka Corporation ('Zenitaka') has two major business areas: its architectural business focuses on structures such as government buildings, office buildings, and commercial facilities, while its civil engineering business is targeted at structures such as tunnels, bridges and dams. Within these areas, there presented two issues that have always persisted in regard to the construction of mountain tunnels. These issues are 'improving safety" and "reducing energy consumption". Mountain tunnels construction requires a massive amount of electricity. This is because there are many kinds of electrical equipment being used day and night, including construction machinery, construction lighting, and ventilating fan. Despite this, the amount of power consumption is generally not tightly managed. In many cases, the exact amount of power consumption is only ascertained when the bill from the power company becomes available. Sometimes, corporations install demand-monitoring equipment to help curb the maximum power demanded. However, even in these cases, the devices only allow the total volume of power consumption to be ascertained, or they may issue warnings to prevent the contracted volume of power from being exceeded. In order to tackle the issue of reducing power consumption, it was first necessary to obtain an accurate breakdown of how much power was being used in each particular area. In other words, we needed to be able to visualize the amount of power being consumed. Safety, was also not being managed very rigorously. Even now, tunnel construction sites often use a 'name label' system for managing entry into the work site. Specifically, red labels with white reverse sides that bear the workers' names on both sides are displayed at the tunnel work site entrance. The workers themselves then flip the name label to the appropriate side when entering or exiting from the work site to indicate whether or not they are working inside the tunnel at any given time. If a worker forgets to flip his or her name label when entering or exiting from the tunnel, management cannot be performed effectively. In order to tackle the challenges mentioned above, Zenitaka decided to build a system that could improve the safety of tunnel construction as well as reduce the amount of power consumed. In other words, this new system would facilitate a clear picture of which workers were working in each location at the mountain tunnel construction site, as well as which processes were being carried out at those respective locations at any given time. The system would maintain the safety of all workers while also carefully controlling the electrical equipment to reduce unnecessary power consumption. Having decided on the concept, our next concern was whether there existed any kind of robust hardware that would not break down at the construction work site, that could move freely in response to changes in the working environment, and that could accurately detect workers and vehicles using radio frequency identification (RFID). Given that this system would involve many components that were new to Zenitaka, we decided to enlist the cooperation of E.I.Sol Co., Ltd. ('E.I.Sol') as our joint development partner, as they had provided us with a highly practical proposal.
Case Study
Improving Production Line Efficiency with Ethernet Micro RTU Controller
Moxa was asked to provide a connectivity solution for one of the world's leading cosmetics companies. This multinational corporation, with retail presence in 130 countries, 23 global braches, and over 66,000 employees, sought to improve the efficiency of their production process by migrating from manual monitoring to an automatic productivity monitoring system. The production line was being monitored by ABB Real-TPI, a factory information system that offers data collection and analysis to improve plant efficiency. Due to software limitations, the customer needed an OPC server and a corresponding I/O solution to collect data from additional sensor devices for the Real-TPI system. The goal is to enable the factory information system to more thoroughly collect data from every corner of the production line. This will improve its ability to measure Overall Equipment Effectiveness (OEE) and translate into increased production efficiencies. System Requirements • Instant status updates while still consuming minimal bandwidth to relieve strain on limited factory networks • Interoperable with ABB Real-TPI • Small form factor appropriate for deployment where space is scarce • Remote software management and configuration to simplify operations
Case Study
Splunk Partnership Ties Together Big Data & IoT Services
Splunk was faced with the need to meet emerging customer demands for interfacing IoT projects to its suite of services. The company required an IoT partner that would be able to easily and quickly integrate with its Splunk Enterprise platform, rather than allocating development resources and time to building out an IoT interface and application platform.
Case Study
How Sirqul’s IoT Platform is Crafting Carrefour’s New In-Store Experiences
Carrefour Taiwan’s goal is to be completely digital by end of 2018. Out-dated manual methods for analysis and assumptions limited Carrefour’s ability to change the customer experience and were void of real-time decision-making capabilities. Rather than relying solely on sales data, assumptions, and disparate systems, Carrefour Taiwan’s CEO led an initiative to find a connected IoT solution that could give the team the ability to make real-time changes and more informed decisions. Prior to implementing, Carrefour struggled to address their conversion rates and did not have the proper insights into the customer decision-making process nor how to make an immediate impact without losing customer confidence.
Case Study
Bridge monitoring in Hamburg Port
Kattwyk Bridge is used for both rail and road transport, and it has played an important role in the Port of Hamburg since 1973. However, the increasing pressure from traffic requires a monitoring solution. The goal of the project is to assess in real-time the bridge's status and dynamic responses to traffic and lift processes.