Download PDF
Societe Generale Uses Integration to Reduce Costs, Improve Decision-Making
Technology Category
- Application Infrastructure & Middleware - Data Exchange & Integration
- Application Infrastructure & Middleware - Event-Driven Application
- Application Infrastructure & Middleware - Middleware, SDKs & Libraries
Applicable Industries
- Finance & Insurance
Applicable Functions
- Business Operation
- Quality Assurance
Use Cases
- Digital Thread
- Process Control & Optimization
Services
- Software Design & Engineering Services
- System Integration
The Challenge
Over the years, Societe Generale’s Risk, HR, Accounting, Procurement, and other business units (BUs) had each built their own information systems to meet business needs. These systems had evolved into separate silos of technologies with no plan for reuse. The results included high development and maintenance costs and data discrepancies that ultimately impacted the ability to make informed decisions. To overcome these issues and industrialize integration between business units, Societe Generale’s IT management decided to implement a platform to manage and govern data exchanges: the Système d’Echange Groupe (SEG), or Group Exchange System.
About The Customer
Societe Generale is a leading financial services group based in France, with a global presence in over 60 countries. The company offers a wide range of services including retail banking, corporate and investment banking, asset management, and securities services. With a workforce of over 138,000 employees, Societe Generale serves millions of clients worldwide. The company is known for its commitment to innovation and digital transformation, aiming to provide high-quality services while maintaining strong regulatory compliance and risk management practices. Societe Generale has been focusing on integrating its various business units to streamline operations and improve decision-making processes.
The Solution
To build the SEG, Societe Generale needed integration technology that could address the wide variety of its technologies and a platform that would deliver high availability and scalability for enterprise-wide data exchange and business processes. Some of the bank’s business processes are highly regulated, so an open platform able to comply with corporate and industry regulations was also a requirement. The bank selected TIBCO’s proven service-oriented architecture components: its leading integration platform, TIBCO ActiveMatrix BusinessWorks™, integration platform, TIBCO ActiveMatrix® Service Grid SOA development platform, and TIBCO Enterprise Message Service™ messaging middleware. The IT organization applied agile development methodology and focused on delivering new functionalities in short four-week cycles. It built the SEG in just seven months. Today the SEG provides better data monitoring, standardizes the exchange of data flow serving specific business processes, and avoids redundancies that are typically the result of point to point integration.
Operational Impact
Quantitative Benefit
Related Case Studies.
Case Study
Real-time In-vehicle Monitoring
The telematic solution provides this vital premium-adjusting information. The solution also helps detect and deter vehicle or trailer theft – as soon as a theft occurs, monitoring personnel can alert the appropriate authorities, providing an exact location.“With more and more insurance companies and major fleet operators interested in monitoring driver behaviour on the grounds of road safety, efficient logistics and costs, the market for this type of device and associated e-business services is growing rapidly within Italy and the rest of Europe,” says Franco.“The insurance companies are especially interested in the pay-per-use and pay-as-you-drive applications while other organisations employ the technology for road user charging.”“One million vehicles in Italy currently carry such devices and forecasts indicate that the European market will increase tenfold by 2014.However, for our technology to work effectively, we needed a highly reliable wireless data network to carry the information between the vehicles and monitoring stations.”
Case Study
Safety First with Folksam
The competitiveness of the car insurance market is driving UBI growth as a means for insurance companies to differentiate their customer propositions as well as improving operational efficiency. An insurance model - usage-based insurance ("UBI") - offers possibilities for insurers to do more efficient market segmentation and accurate risk assessment and pricing. Insurers require an IoT solution for the purpose of data collection and performance analysis
Case Study
Smooth Transition to Energy Savings
The building was equipped with four end-of-life Trane water cooled chillers, located in the basement. Johnson Controls installed four York water cooled centrifugal chillers with unit mounted variable speed drives and a total installed cooling capacity of 6,8 MW. Each chiller has a capacity of 1,6 MW (variable to 1.9MW depending upon condenser water temperatures). Johnson Controls needed to design the equipment in such way that it would fit the dimensional constraints of the existing plant area and plant access route but also the specific performance requirements of the client. Morgan Stanley required the chiller plant to match the building load profile, turn down to match the low load requirement when needed and provide an improvement in the Energy Efficiency Ratio across the entire operating range. Other requirements were a reduction in the chiller noise level to improve the working environment in the plant room and a wide operating envelope coupled with intelligent controls to allow possible variation in both flow rate and temperature. The latter was needed to leverage increased capacity from a reduced number of machines during the different installation phases and allow future enhancement to a variable primary flow system.
Case Study
Automated Pallet Labeling Solution for SPR Packaging
SPR Packaging, an American supplier of packaging solutions, was in search of an automated pallet labeling solution that could meet their immediate and future needs. They aimed to equip their lines with automatic printer applicators, but also required a solution that could interface with their accounting software. The challenge was to find a system that could read a 2D code on pallets at the stretch wrapper, track the pallet, and flag any pallets with unread barcodes for inspection. The pallets could be single or double stacked, and the system needed to be able to differentiate between the two. SPR Packaging sought a system integrator with extensive experience in advanced printing and tracking solutions to provide a complete traceability system.
Case Study
Transforming insurance pricing while improving driver safety
The Internet of Things (IoT) is revolutionizing the car insurance industry on a scale not seen since the introduction of the car itself. For decades, premiums have been calculated using proxy-based risk assessment models and historical data. Today, a growing number of innovative companies such as Quebec-based Industrielle Alliance are moving to usage-based insurance (UBI) models, driven by the advancement of telematics technologies and smart tracking devices.
Case Study
MasterCard Improves Customer Experience Through Self-Service Data Prep
Derek Madison, Leader of Business Financial Support at MasterCard, oversees the validation of transactions and cash between two systems, whether they’re MasterCard owned or not. He was charged with identifying new ways to increase efficiency and improve MasterCard processes. At the outset, the 13-person team had to manually reconcile system interfaces using reports that resided on the company’s mainframe. Their first order of business each day was to print 20-30 individual, multi-page reports. Using a ruler to keep their place within each report, they would then hand-key the relevant data, line by line, into Excel for validation. “We’re talking about a task that took 40-80 hours each week,” recalls Madison, “As a growing company with rapidly expanding product offerings, we had to find a better way to prepare this data for analysis.”