下载PDF
Intellegens > 实例探究 > 用于预测性维护和流程优化的新型深度学习方法
Intellegens Logo

Novel Deep Learning Approach for Predictive Maintenance and Process Optimization

 Novel Deep Learning Approach for Predictive Maintenance and Process Optimization - IoT ONE Case Study
技术
  • 分析与建模 - 机器学习
适用功能
  • 维护
用例
  • 预测性维护
服务
  • 数据科学服务
挑战

大多数组织对其流程采用“反应性维护”方法,即在发生故障后对设备进行维修和更换。机器发生故障后的维修成本大约高出 10 倍,更不用说对收入和客户满意度的直接影响。通过“预防性维护”,设备按照预先设定的时间间隔进行维修或更换,以避免故障。虽然这种方法减少了计划外停机时间,但代价高昂,因为这些计划维修发生在设备没有任何问题的情况下。然而,预测性维护的好处是显着的,因此它正成为制造商的首选方法,使组织能够在需要时预见和安排维修和更换,实现设备 100% 的正常运行时间。制造业中传统机器学习的一个挑战是技术需要干净和完整的数据。然而,制造和过程数据可能是稀疏且嘈杂的。

目前,工程师很难访问和解释生产过程数据,他们依靠个人经验和意见来修改工艺参数。这会导致决策的不一致和潜在的次优决策,此外还增加了流程失败的风险,增加了相关的时间和成本。由于改变操作参数及其影响之间的固有时间滞后和惯性,生产线特别难以使用标准技术建模。通过应用相关和创新的深度学习技术来更有效地设计生产流程,也可以显着降低与废料和失败生产相关的成本。

解决方案

Intellegens 开发了一种机器学习工具 Alchemite,它可以在所有可用数据上训练模型,无论多么稀疏或嘈杂。它将所有可用数据汇集在一起,并使用潜在的相关性来准确预测缺失值并生成尽可能完整的模型。

该技术利用现有的流程数据来降低资产维护计划的成本,提高对整个系统的整体了解,优化制造中涉及的生产线和流程。

运营影响
  • [Cost Reduction - Waste]

    Reduction of material cost by minimising waste. The application of Alchemite and the ability to run virtual experiments can reduce the amount of waste produced at all stages of production.

  • [Process Optimization - Real Time Monitoring]

    Transparent understanding of processes. Achieve the best possible understanding of how production techniques correlate to the final properties and a platform to do virtual experiments of changing parameters that cannot be tried on a live production line. This is especially important due to the time-varying character and inherent time lag present on the production line.

  • [Product Improvement - Brand Image]

    Lead the market as technology innovators with an improved brand image, providing additional evidence for pioneering in industrial design that is able to leverage cutting-edge science, across all disciplines, in order to improve both manufacturing design and operating margins.

相关案例.

联系我们

欢迎与我们交流!

* Required
* Required
* Required
* Invalid email address
提交此表单,即表示您同意 IoT ONE 可以与您联系并分享洞察和营销信息。
不,谢谢,我不想收到来自 IoT ONE 的任何营销电子邮件。
提交

Thank you for your message!
We will contact you soon.