下载PDF
Optimizing Automotive Manufacturing with Industrial Generative AI
技术
- 功能应用 - 制造执行系统 (MES)
适用行业
- 汽车
用例
- 添加剂制造
- 制造过程模拟
挑战
像宝马这样的全球制造商面临着一个困难的优化问题:他们如何安排工人实现生产目标,同时最大限度地减少闲置时间?有多种可能的配置和许多限制。不同的车间有不同的生产率,并且每个车间都有自己独立的一组班次安排。此外,制造商需要防止制造过程中各步骤之间缓冲区的溢出和短缺。
关于客户
宝马集团是一家全球汽车制造商,面临着优化制造工厂调度的挑战,以实现生产目标,同时最大限度地减少闲置时间。
解决方案
作为麻省理工学院量子工程中心 (CQE) 成员资格的一部分,萨帕塔和宝马集团合作,将生成式人工智能技术应用于宝马的工厂调度优化问题。具体来说,他们根据现有最先进的求解器生成的最佳解决方案训练了一个受量子启发的生成模型。然后生成模型生成新的、以前未考虑的解决方案。这种方法称为生成器增强优化 (GEO)。
运营影响
数量效益
相关案例.
Case Study
Integral Plant Maintenance
Mercedes-Benz and his partner GAZ chose Siemens to be its maintenance partner at a new engine plant in Yaroslavl, Russia. The new plant offers a capacity to manufacture diesel engines for the Russian market, for locally produced Sprinter Classic. In addition to engines for the local market, the Yaroslavl plant will also produce spare parts. Mercedes-Benz Russia and his partner needed a service partner in order to ensure the operation of these lines in a maintenance partnership arrangement. The challenges included coordinating the entire maintenance management operation, in particular inspections, corrective and predictive maintenance activities, and the optimizing spare parts management. Siemens developed a customized maintenance solution that includes all electronic and mechanical maintenance activities (Integral Plant Maintenance).
Case Study
Monitoring of Pressure Pumps in Automotive Industry
A large German/American producer of auto parts uses high-pressure pumps to deburr machined parts as a part of its production and quality check process. They decided to monitor these pumps to make sure they work properly and that they can see any indications leading to a potential failure before it affects their process.