下载PDF
Optimizing Robotic Car Storage Service: A Stanley Robotics Case Study
技术
- 机器人 - 自动导引车 (AGV)
- 传感器 - 自动驾驶传感器
适用行业
- 汽车
- 运输
适用功能
- 物流运输
- 维护
用例
- 自主机器人
- 数字孪生
挑战
Stanley Robotics 是一家高科技公司,旨在通过引入自主机器人来移动仓库中的汽车,从而彻底改变汽车物流行业。我们面临的挑战是开发一种快速、可靠且高效的机器人,以满足汽车物流行业的需求。机器人的设计需要考虑机械优化,才能与传统汽车物流公司有效竞争。 Stanley Robotics 需要证明其机器人车辆每年可以完成大量移动并证明其耐用性。为了实现这一目标,该公司需要一个合作伙伴来帮助开发机器人的数字孪生,以计算对其提出的所有要求,并通过耐用性计算来验证其产品。
关于客户
Stanley Robotics 是一家深度科技公司,由 Clement Boussard 和 Aurélien Cord 于 2015 年创立。该公司最初的想法是通过智能机器人移动汽车,而不是使汽车自动化并赋予其自行停车的能力。在分析了机场长时间停车市场后,Stanley Robotics 意识到其产品非常适合汽车物流行业。他们的户外机器人可以在管理车队、汽车和停车活动的中央智能中心的帮助下移动重达 2600 公斤的汽车并将其存放到停车位。
解决方案
Stanley Robotics 与工程仿真软件供应商 Altair 合作。他们使用 Altair 的 Inspire Motion 使机器人多体模型能够用于预先调整尺寸。该模型通过 Altair 的 MotionSolve 得到进一步增强,可实现高级功能,包括执行 3D 道路定义、纵向和横向轮胎力(以模拟操控性和耐久性)以及专用模拟场景。斯坦利团队通过将关键部件表示为柔性体来改进模型,以捕获机器人底盘在暴露于标准化车辆耐久性事件时的变形和振动。有了完整的 CAE 流程,就可以研究机器人的灵敏度和鲁棒性,并确定最佳设计特性。
运营影响
数量效益
相关案例.
Case Study
Integral Plant Maintenance
Mercedes-Benz and his partner GAZ chose Siemens to be its maintenance partner at a new engine plant in Yaroslavl, Russia. The new plant offers a capacity to manufacture diesel engines for the Russian market, for locally produced Sprinter Classic. In addition to engines for the local market, the Yaroslavl plant will also produce spare parts. Mercedes-Benz Russia and his partner needed a service partner in order to ensure the operation of these lines in a maintenance partnership arrangement. The challenges included coordinating the entire maintenance management operation, in particular inspections, corrective and predictive maintenance activities, and the optimizing spare parts management. Siemens developed a customized maintenance solution that includes all electronic and mechanical maintenance activities (Integral Plant Maintenance).
Case Study
Airport SCADA Systems Improve Service Levels
Modern airports are one of the busiest environments on Earth and rely on process automation equipment to ensure service operators achieve their KPIs. Increasingly airport SCADA systems are being used to control all aspects of the operation and associated facilities. This is because unplanned system downtime can cost dearly, both in terms of reduced revenues and the associated loss of customer satisfaction due to inevitable travel inconvenience and disruption.
Case Study
IoT-based Fleet Intelligence Innovation
Speed to market is precious for DRVR, a rapidly growing start-up company. With a business model dependent on reliable mobile data, managers were spending their lives trying to negotiate data roaming deals with mobile network operators in different countries. And, even then, service quality was a constant concern.
Case Study
Digitize Railway with Deutsche Bahn
To reduce maintenance costs and delay-causing failures for Deutsche Bahn. They need manual measurements by a position measurement system based on custom-made MEMS sensor clusters, which allow autonomous and continuous monitoring with wireless data transmission and long battery. They were looking for data pre-processing solution in the sensor and machine learning algorithms in the cloud so as to detect critical wear.