下载PDF
Supply Chain Management in the Automotive Industry
技术
- 处理器与边缘智能 - 嵌入式和边缘计算机
适用行业
- 汽车
适用功能
- 物流运输
- 离散制造
用例
- 供应链可见性(SCV)
- 库存管理
- 车队管理
服务
- 系统集成
- 硬件设计与工程服务
挑战
汽车行业的特点是质量要求高、产品种类多、工艺复杂。全球化和日益增长的客户要求迫使汽车制造商提供多种车型和选择。这种复杂性加上国际竞争的压力,使高效的物流成为一项挑战。该行业还面临着确保来自不同国家/地区的各种汽车零部件按时交付到生产工厂的挑战。这需要精心设计的移动计算解决方案。另一个挑战是准时生产原则,该原则要求按照汽车组装的准确顺序将正确的单个汽车零部件交付到生产线上的每个工作岗位。
关于客户
本案例研究中的客户是汽车行业,按收入计算,汽车行业是全球最重要的经济部门之一。该行业的特点是质量期望高、产品种类繁多、流程复杂。由于全球化和客户要求不断提高,该行业的汽车制造商被迫提供大量车型和选择。例如,一个德国高端汽车品牌的单个车型系列可以达到 1017 种可能的汽车变体。该行业还倾向于将汽车零部件运往当地制造厂进行现场组装,这一原则称为“全散件”(CKD),以降低进口关税和运费。
解决方案
Advantech-DLoG 提供移动计算解决方案,支持汽车行业的物流流程。其叉车终端用于生产物流流程、内部运输、扫描运输货物和采购订单处理。对于入站生产物流,Advantech-DLoG 的坚固车载终端(如 XMT 5、MTC 6 和 DLT-V8310)安装在叉车和牵引车上,可确保零件和组件按时按顺序交付到生产线。对于操作员和工具管理,UTC 系列坚固的信息终端可以显示车间的重要生产数据以及生产步骤和组件的变化。对于备件物流,Advantech-DLoG MTC 6 车载终端配有叉车或订单拣选机上的 10 英寸和 12 英寸显示屏,可确保精确灵活地管理原厂零件物流。
运营影响
相关案例.
Case Study
Integral Plant Maintenance
Mercedes-Benz and his partner GAZ chose Siemens to be its maintenance partner at a new engine plant in Yaroslavl, Russia. The new plant offers a capacity to manufacture diesel engines for the Russian market, for locally produced Sprinter Classic. In addition to engines for the local market, the Yaroslavl plant will also produce spare parts. Mercedes-Benz Russia and his partner needed a service partner in order to ensure the operation of these lines in a maintenance partnership arrangement. The challenges included coordinating the entire maintenance management operation, in particular inspections, corrective and predictive maintenance activities, and the optimizing spare parts management. Siemens developed a customized maintenance solution that includes all electronic and mechanical maintenance activities (Integral Plant Maintenance).
Case Study
Monitoring of Pressure Pumps in Automotive Industry
A large German/American producer of auto parts uses high-pressure pumps to deburr machined parts as a part of its production and quality check process. They decided to monitor these pumps to make sure they work properly and that they can see any indications leading to a potential failure before it affects their process.