下载PDF
Driving Energy Efficiency: TUfast Eco Team's Success with HyperWorks
技术
- 分析与建模 - 数字孪生/模拟
- 机器人 - 自动导引车 (AGV)
适用行业
- 汽车
- 生命科学
适用功能
- 产品研发
用例
- 交通模拟
- 车辆性能监测
服务
- 系统集成
- 培训
挑战
来自慕尼黑工业大学的 TUfast Eco 团队由来自不同研究领域的约 30 名学生组成,其任务是设计、开发和制造节能车辆,以参加各种节能竞赛,包括壳牌生态马拉松。面临的挑战是每年制造一辆全新的车辆,不允许使用前一年车辆的任何部件。这是为了确保将前几年的技术专长和开发方法传递给新团队。开发节能车辆最重要的方面之一是减少车辆的质量。因此,团队成员不断寻找减轻重量的潜力,特别是在设计悬架和底盘时。
关于客户
TUfast Eco 团队由来自慕尼黑工业大学的约 30 名积极进取的学生组成。该团队分为一个行政组和三个技术组——底盘组、悬架组和动力总成组。学生设计和开发所有车辆零部件和总成,然后在团队车间或与外部合作伙伴合作制造。该团队是壳牌生态马拉松赛中最成功的团队之一,这是一项可持续交通国际竞赛,来自世界各地的学校和大学的学生团队设计了尽可能节能的车辆。
解决方案
TUfast Eco 团队在生产前使用 Altair Engineering 的 HyperWorks 软件套件来开发、分析和优化车辆组件。 TUfast Eco 团队的 eLi 系列每辆车的几乎每个部件在生产前都使用 CAE 软件进行了设计、模拟和优化。该团队采用了 HyperWorks 套件的工具,包括用于几何创建和网格划分的 HyperMesh、作为 FEA 求解器和优化工具的 OptiStruct 以及用于后处理任务的 HyperView。该团队使用模拟来研究如何最好地定位车辆的帘布层,以充分受益于所选材料碳纤维 (CFRP)。为了优化复合材料和组件,学生们应用了 Altair 专门针对复合材料的设计和优化而开发的三步优化方法。
运营影响
数量效益
相关案例.
Case Study
Integral Plant Maintenance
Mercedes-Benz and his partner GAZ chose Siemens to be its maintenance partner at a new engine plant in Yaroslavl, Russia. The new plant offers a capacity to manufacture diesel engines for the Russian market, for locally produced Sprinter Classic. In addition to engines for the local market, the Yaroslavl plant will also produce spare parts. Mercedes-Benz Russia and his partner needed a service partner in order to ensure the operation of these lines in a maintenance partnership arrangement. The challenges included coordinating the entire maintenance management operation, in particular inspections, corrective and predictive maintenance activities, and the optimizing spare parts management. Siemens developed a customized maintenance solution that includes all electronic and mechanical maintenance activities (Integral Plant Maintenance).
Case Study
Monitoring of Pressure Pumps in Automotive Industry
A large German/American producer of auto parts uses high-pressure pumps to deburr machined parts as a part of its production and quality check process. They decided to monitor these pumps to make sure they work properly and that they can see any indications leading to a potential failure before it affects their process.