下载PDF
Hitting the Bullseye on Cause Marketing with Predictive Analytics
技术
- 分析与建模 - 预测分析
适用功能
- 销售与市场营销
用例
- 补货预测
服务
- 数据科学服务
挑战
DonorBureau 是一家为非营利组织提供建模和细分服务的小公司,它面临着提供更有效、更准确的预测模型的挑战,以便在竞争激烈的市场中脱颖而出。该公司处理超过 9 亿封邮件交易、1.4 亿笔捐款和超过 4000 万个人,预测建模需求正在不断增加。理想情况下,他们希望拥有一支庞大的数据科学家团队,但这些职位是令人垂涎的,而且价格不菲。构建和部署预测分析非常耗时、预算超支,对于外行人来说,实施和维护也具有挑战性。
关于客户
DonorBureau 是一家小型公司,自 2011 年成立以来,一直致力于帮助数百家非营利组织、筹款组织和机构最大限度地提高其筹款活动的投资回报率。DonorBureau 使用预测分析提供建模和细分服务,旨在提高筹款呼吁的效率。他们经过验证的模型有助于预测潜在客户在一年中的特定时间和联系频率下对具有特定呼吁的组织的接受程度。
解决方案
为了克服这一挑战,DonorBureau 与 DataRobot 合作,后者提供了自动化、高精度、快速且经济高效的企业 AI 解决方案,由 Amazon Web Services (AWS) 提供支持。DataRobot 托管 AI 云产品中的强大算法使 DonorBureau 能够在极短的时间内自动生成更准确的模型。其好处立竿见影且持续不断。团队很快就体验到了开箱即用的 10% 的准确度提升,无需微调,总拥有成本仅为之前费用的 25%。
运营影响
数量效益
相关案例.
Case Study
Designing an intuitive UI for effective product demand forecasting in retail
The client, a leading luxury store chain operating in over 100 countries, was facing challenges with their product demand forecasting process. The process involved a significant amount of manual work, with all sales-related data being kept in Excel tables and calculated manually. The client's merchandising and planning experts used a demand forecasting web application to make estimations of customer demand over a specific period of time. The solution calculated historical data and other analytical information to produce the most accurate predictions. However, the client wanted to improve the efficiency and effectiveness of this process, making it faster, more accurate, and less complicated for their employees. They sought to unify all processes under an intuitive UI.
Case Study
Blue Bottle Coffee Enhances Ordering Accuracy and Reduces Waste with ML-Driven Demand Forecasting
Blue Bottle Coffee (BBC), a global coffee roaster and retailer, faced a significant challenge in managing the supply of pastries across its international network of cafes. The company was using a manual ordering system, where cafe leaders estimated the required quantity of pastries based on historical sales data, current inventory, and growth projections. This system was effective when BBC had a few cafes, but with over 70 cafes worldwide, it became inefficient and inaccurate. The inaccuracies led to either under-ordering, causing sell-outs and customer dissatisfaction, or over-ordering, resulting in food waste and profit loss. The suboptimal utilization of pastries was also affecting BBC's bottom line. Therefore, BBC needed a scalable, precise, and predictive ordering solution to improve pastry ordering accuracy, reduce food waste, and meet its sustainability goals.
Case Study
Optimizing delivery of global educational programs with deeper insight into company finances
EF Education First (EF) provides language tuition around the world, often by immersing students in another culture. As student numbers fluctuate in different markets and destinations, the company must manage a dizzying array of costs relating to staffing, accommodation and educational materials, and price its offerings to maintain healthy profits while also maximizing sales. With thousands of employees influencing its budgets and financial plans, the company had difficulty ensuring a consistent approach to calculating costs and collecting data. Historically, EF had relied on spreadsheets to collect and compile financial and operational planning data from employees. As a highly decentralized organization, this was no easy task, and it was difficult to ensure a standardized approach to calculating figures and creating accurate budgets.
Case Study
Erhvervsstyrelsen: Automating financial planning processes and building budgets that everyone believes in
Erhvervsstyrelsen, the Danish Business Authority, supports businesses across Denmark. It runs 450 projects across 27 offices, employs 600 people, and is responsible for an annual budget of DKK 600 million (USD 89.8 million), as well as a number of national and EU grants. Each of these projects manages its own budget – but Erhvervsstyrelsen needs to maintain control of overall expenditure, report back to the Danish parliament, and demonstrate the value it delivers for taxpayers’ money. For this reason, it is very important for the organization to have a robust, reliable budgeting process. Erhvervsstyrelsen was formed by a merger of three former agencies, each of which had its own separate budgeting system. Since none of these systems could be adapted to meet the needs of the new organization, Erhvervsstyrelsen set up a new budgeting process based on spreadsheets. This process involved sending out spreadsheets to each project manager, and manually collecting and consolidating the data they sent back.
Case Study
Getin Noble Bank S.A. Personalizing offers to meet customers’ specific banking needs raises savings deposits by 20 percent
Getin Noble Bank S.A. experienced several years of rapid growth, at twice the pace of the rest of the Polish banking sector. As the market became saturated, customers demanded a higher level of service. To create tailored product offers to meet their needs, the bank needed a more efficient and automated method of customer segmentation. It also wanted to develop effective campaigns with repeatable and predictable results.
Case Study
SmarterData: Helping retailers redefine practices for the digital age
SmarterData, a company based in San Ramon, California, wanted to help its clients navigate the uncertainties of the digital-age retail industry. The company aimed to find new ways to provide relevant, actionable, data-driven insights into consumer behavior. As the online retail sector continues to grow, many traditional retailers find themselves struggling to keep pace. In today’s digital economy, companies of all shapes and sizes must both manage and exploit digital transformation in order to survive. SmarterData offers a range of predictive and prescriptive analytics services – including innovative mobile apps that help consumers find products, and retailers gain real-time insight into store operations.