Case Studies.

Our Case Study database tracks 18,927 case studies in the global enterprise technology ecosystem.
Filters allow you to explore case studies quickly and efficiently.

Filters
  • (5,794)
    • (2,602)
    • (1,765)
    • (764)
    • (622)
    • (301)
    • (236)
    • (163)
    • (155)
    • (101)
    • (94)
    • (86)
    • (49)
    • (28)
    • (14)
    • (2)
    • View all
  • (5,073)
    • (2,519)
    • (1,260)
    • (761)
    • (490)
    • (436)
    • (345)
    • (86)
    • (1)
    • View all
  • (4,407)
    • (1,774)
    • (1,292)
    • (480)
    • (428)
    • (424)
    • (361)
    • (272)
    • (211)
    • (199)
    • (195)
    • (41)
    • (8)
    • (8)
    • (5)
    • (1)
    • View all
  • (4,158)
    • (2,048)
    • (1,256)
    • (927)
    • (169)
    • (9)
    • View all
  • (2,488)
    • (1,262)
    • (472)
    • (342)
    • (225)
    • (181)
    • (150)
    • (142)
    • (140)
    • (127)
    • (97)
    • View all
  • View all 15 Technologies
  • (1,732)
  • (1,626)
  • (1,605)
  • (1,461)
  • (1,423)
  • (1,411)
  • (1,313)
  • (1,178)
  • (1,059)
  • (1,017)
  • (832)
  • (811)
  • (794)
  • (707)
  • (631)
  • (604)
  • (595)
  • (552)
  • (500)
  • (441)
  • (382)
  • (348)
  • (316)
  • (302)
  • (295)
  • (265)
  • (233)
  • (192)
  • (191)
  • (184)
  • (168)
  • (165)
  • (127)
  • (116)
  • (115)
  • (81)
  • (80)
  • (63)
  • (58)
  • (56)
  • (23)
  • (9)
  • View all 42 Industries
  • (5,782)
  • (4,114)
  • (3,091)
  • (2,780)
  • (2,671)
  • (1,596)
  • (1,471)
  • (1,291)
  • (1,013)
  • (969)
  • (782)
  • (246)
  • (203)
  • View all 13 Functional Areas
  • (2,568)
  • (2,482)
  • (1,866)
  • (1,561)
  • (1,537)
  • (1,530)
  • (1,126)
  • (1,027)
  • (907)
  • (695)
  • (647)
  • (604)
  • (600)
  • (521)
  • (514)
  • (514)
  • (491)
  • (423)
  • (392)
  • (363)
  • (351)
  • (348)
  • (341)
  • (312)
  • (312)
  • (293)
  • (272)
  • (243)
  • (238)
  • (237)
  • (230)
  • (217)
  • (214)
  • (208)
  • (207)
  • (204)
  • (198)
  • (191)
  • (188)
  • (181)
  • (181)
  • (175)
  • (160)
  • (155)
  • (144)
  • (143)
  • (142)
  • (142)
  • (141)
  • (138)
  • (120)
  • (119)
  • (118)
  • (116)
  • (113)
  • (108)
  • (107)
  • (99)
  • (97)
  • (96)
  • (96)
  • (90)
  • (88)
  • (87)
  • (85)
  • (83)
  • (82)
  • (80)
  • (80)
  • (73)
  • (67)
  • (66)
  • (64)
  • (61)
  • (60)
  • (59)
  • (58)
  • (57)
  • (53)
  • (53)
  • (50)
  • (49)
  • (49)
  • (48)
  • (44)
  • (39)
  • (36)
  • (36)
  • (35)
  • (32)
  • (31)
  • (30)
  • (29)
  • (27)
  • (26)
  • (26)
  • (25)
  • (25)
  • (22)
  • (22)
  • (21)
  • (19)
  • (19)
  • (18)
  • (18)
  • (17)
  • (17)
  • (16)
  • (14)
  • (13)
  • (13)
  • (12)
  • (11)
  • (11)
  • (11)
  • (9)
  • (7)
  • (6)
  • (5)
  • (4)
  • (4)
  • (3)
  • (2)
  • (2)
  • (2)
  • (2)
  • (1)
  • View all 127 Use Cases
  • (10,333)
  • (3,499)
  • (3,392)
  • (2,982)
  • (2,593)
  • (1,261)
  • (932)
  • (344)
  • (10)
  • View all 9 Services
  • (503)
  • (432)
  • (382)
  • (301)
  • (246)
  • (143)
  • (116)
  • (112)
  • (106)
  • (87)
  • (85)
  • (78)
  • (75)
  • (73)
  • (72)
  • (69)
  • (69)
  • (67)
  • (65)
  • (65)
  • (64)
  • (62)
  • (58)
  • (55)
  • (54)
  • (54)
  • (53)
  • (53)
  • (52)
  • (52)
  • (50)
  • (50)
  • (49)
  • (48)
  • (47)
  • (46)
  • (43)
  • (43)
  • (42)
  • (37)
  • (35)
  • (32)
  • (31)
  • (31)
  • (30)
  • (30)
  • (28)
  • (28)
  • (27)
  • (24)
  • (23)
  • (23)
  • (23)
  • (22)
  • (21)
  • (21)
  • (20)
  • (20)
  • (19)
  • (19)
  • (19)
  • (19)
  • (18)
  • (18)
  • (18)
  • (18)
  • (17)
  • (17)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (15)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • View all 737 Suppliers
Selected Filters
18,927 case studies
CAD/CAM Dental Solutions from Sirona
WIBU-SYSTEMS
To protect intellectual property, prevent reverse engineering and avoid manipulation of appliances. To design customized appliances with low entry-level prices from software modules and license models. Precautions to prevent reverse engineering of .NET software include secure and high-performance protection methods. Medical appliances must be safeguarded from manipulation to comply with the directives of the MPG (the regulation body for medical appliances).
Distributed Systems for Medical Ultrasound
RTI
As a large distributed system scales, the ability to simultaneously maintain or enhance performance and reliability creates its own set of unique challenges. How do you address the distributed future, ensure you learn from your past experiences and build on the investments customers have already made? The challenges are real, and in the process of overcoming them BK Medical is building healthcare systems that are more cost effective, and provide greater integration into the patient care systems to facilitate improved decision making for doctors.
Field Device Asset Management For Chemical Company in China
Emerson
Chinese chemical subsidiary of multinational corporation serves customers throughout the world. Sales offices and research and technology centers are strategically located to provide rapid response to customer requests. Just two workers were assigned to maintain thousands of intelligent instruments in three production units, so they could do little more than react to device issues as they appeared. This costly maintenance method inevitably led to unexpected downtime when a critical instrument failed. Plant management recognized the need to change from reactive to predictive maintenance for all assets, including instruments and control valves, but help was needed in implementing such a technology-based initiative.
Maintenance efficiency – automated
AUVESY-MDT
Egger Ltd at Hexham, Northumberland, UK, manufactures chip board and associated products on highly automated production lines. The programs within numerous manufacturing systems and controllers are vital to the resulting OEE of the company and require frequent back up, version control and automatic administration. Egger standardised on Versiondog software from SolutionsPT to undertake and manage this task.
Wireless Temperature Monitoring Increases Throughput
Adaptive Wireless Solutions
The customer’s manufacturing process takes raw aluminum billets and uses a cold rolling process to produce rolled aluminum goods. A throughput bottleneck was identified at the cooling station as the existing temperature measurement process required the crane operator to climb down from the crane regularly and perform direct measurements on the rolls.
Industrial Workforce Mobility for Improved Safety & Operations
Jacobs
Huntsman Corporation, a global manufacturer and marketer of differentiated chemicals, undertook an aggressive program to eliminate injuries, product defects, and environmental releases at their Port Neches facility. Termed “Project Zero”, this program required a completely mobile solution to empower operations and maintenance personnel to capture defects, track work progress and make process and safety related decisions in real-time.
IoE Increases Operational Efficiencies and Improves Energy Management
Cisco
For many manufacturing companies today, the opportunity to connect people, process, data, and things created by the Internet of Everything (IoE) presents a new way to look at factory automation. The opportunity for digital innovation often arises when a company is expanding capacity or building a new production facility. Mahindra and Mahindra, one of India’s leading automakers, seized the opportunity to deploy a connected factory of the future at their new Chakan facility.
Smart Agriculture Project Ensures Crops Health and Reduces Losses
Libelium
Traditional agriculture companies have applied for ages the same tools and processes that have become antiquated these days. Most of the organizations that work on the farming sector have realized the great potential that cutting edge technologies have to ease their daily works, reduce losses or improve the yield quantity and also product quality. Wireless sensor networks have opened a wide range in terms of possibilities for farmers and agricultural management organizations. Getting real-time information from different water, soil or air parameters of any field allows taking smart and strategic decisions to save resources and optimize yields.
Corporate Identity Solution Adds Convenience to Beckman Coulter
Beckman Coulter wanted to implement a single factor solution for physical and remote logical access to corporate network. Bechman Coulter's users were carrying smart card badges for doors, but also needed a one-time password token to access to our corporate network when they were not in the office. They wanted to simplify the process.
Virtual Damage Assessment & Repair Tracking for F-35 and F-22 Aircraft
NGRAIN Corporation
As part of effective maintenance for any aircraft, accurately assessing airframe damage resulting from combat or environmental hazards is crucial. Seemingly small factors — such as the depth of a scratch or the distance of a hole from supporting structures — can impact flight-worthiness, aircraft stealth capability and pilot safety. As well, in an era of reduced spending and personnel, aircraft maintenance technician efficiency is essential. Recognizing these challenges, Lockheed Martin sought to streamline its damage and assessment process for the F-35. Traditionally, maintenance technicians would manually assess and track damaged areas by placing a transparent film over these areas and tracing reference points (such as fasteners and seams) with a marker. They would then cross-reference this information with repair data history captured in a spreadsheet. However, cross-referencing line drawings did not provide the optimal platform to visualize repair information, it was also quite cumbersome and time consuming — leaving more room for maintenance errors.
ALD Automotive
Zscaler
ALD Automotive's rapid growth in 39 countries has led to an exponential increase in IT infrastructure complexity. In order to provide cost effective and high performance access when needed, a mix of local and central Internet connectivity has been established rather than backhauling all traffic to a central site. With the evolution of the Web, content has become more dynamic and threats more sophisticated. Secure hacks are encrypted and require SSL inspection. ALD Automotive was looking for a full complete security solution.
Modernizing a Legacy Energy Grid
For AusNet, this represented a tremendous challenge to replace 700,000 legacy meters across a diverse geographical environment creating additional network communications coverage complexity. The Victorian state government also required that the new meters would need to maintain high-performance levels for 15 years. To demonstrate compliance and smart grid uptime, AusNet would need to consistently produce accurate meter performance data on a daily basis for 20 market retailers. This required integrating and analyzing massive volumes of smart grid data in real-time.
Semios Helps Growers Find a Safer Alternative to Harmful Pesticides
Semios has been offering pest management systems using a network of connected devices including pheromone dispensers, automated traps, soil moisture meters, leaf-wetness monitoring and weather stations. Pheromones are an alternative for pesticides. The challenge was that pheromones are generally more expensive than pesticides. To get the growers to adopt pheromones Semios need to automate their delivery in a way that's going to be more cost-effective. The two key elements of precision agriculture are the provision of information based on data collected from the field and, based on that information, timely, precise action to manage the crop. Semios wanted an IoT solution to better manage the data and control the logistic of pheromone.
Bicycle
Synapse Wireless
PBSC Urban provides municipalities throughout the world a bicycles-for-lease and an accompanying fleet management system. To pull off that feat, PBSC Urban needed a way to easily transmit essential data from their bicycles to the various bike station kiosks located throughout the cities they serve.
Island-wide Smart Grid Network (N.V. Elmar)
Ingenu
N.V. Elmar had initiated a project to implement a smart grid network across the entire island. The enhanced grid would streamline electricity distribution processes and provide N.V. Elmar’s customers with access to usage data which would result in more efficient use of power and services. Although the initial network deployment was designed for smart electric meters, N.V. Elmar wanted to have the ability to scale the network to add additional applications. Because this was essentially a greenfield project, the deployment process would start with a pilot program where various technologies would be evaluated. Cost, network longevity, coverage and reliability were all factors in the selection process.
A centralized data warehouse for unified reporting and analytical needs
WinWire
One of the main challenges was that the company required a centralized data warehouse for unified reporting and analytical requirements. The data was not consolidated properly and its structure was not suitable for user requirements. Besides, reporting process was extremely slow. Individual systems had expanded to the point that information was no longer stored and presented in the centralized manner that could facilitate efficient organizational decisions across the company as a whole. It was also becoming obvious that a data warehouse should better enable internal and external user access to data and increase the performance of analysis and reporting activities. To evolve its offering from simple data feeds to self-service BI, the company needed a new robust platform that could enable users come out of excel mindset and could take them to exploratory mode for better and faster decision making. The objective was to integrate the line of business applications (On-Premise and SAAS).
Reservoir monitoring in Hontomin
Worldsensing
The Spanish Government has launched a CO2 Capture and Storage Program in Hontoman with the aim of developing this technology. This programme's approach is based on the fact that CO2 capture and storage could be an essential part of the solution to achieve substantial global CO2 emission reductions.
A Smoother Ride on the Austrian Autobahn
Cisco
By connecting thousands of sensors to an extensive network, Austria's autobahn corporation, ASFINAG, has created a smart highway designed to clear traffic jams before they happen. Through the Internet of Everything, ASFINAG gets the data needed to keep roads safe and drivers happy. Challenge: • Gain data on road, traffic, and weather conditions • Communicate accurate information to drivers
Running Shoe ViMove Technology
DorsaVi
An athlete wanted to find the optimal running shoe that would maximize his running performance and reduce the risk of injury. He was interested in finding out how a shoe’s weight, structure and support affected his ability to achieve an optimal running style. To help him select the right running shoe, ViMove was used.
Connected Transportation: A Smarter Brain for Your Train with Intel
Intel
A modern locomotive, for example, has as many as 200 sensors generating more than a billion data points per second. Vibration sensors surround critical components, video cameras scan the track and cab, while other sensors monitor RPM, power, temperature, the fuel mix, exhaust characteristics, and more.Most of today’s locomotives lack sufficient on-board processing power to make full use of all this data. To make matters worse, the data from different subsystems, such as the brakes, fuel system, and engine, remain separate, stored in isolated “boxes” that prevent unified analysis. The data is available, but the technology needed to process it in the most effective manner is not. As new sensors are added to the machine, the problem escalates.
Flow Battery Technology Changes Energy Distribution
Raytheon Technologies
The size of the cell stacks and the costly materials needed for construction of traditional flow batteries have kept the technology from becoming commercially viable. The solution is needed to make the stacks smaller and less expensive without losing any of the power.
S&S Landscaping Improves Billing, Customer Service with Vehicle Tracking
Verizon
To improve billing accuracy, S&S Landscaping needed a way to document driver arrival and departure times at customer sites. They also wanted a better way to locate drivers in the field. Since installing Networkfleet's GPS solution, the company can track their vehicles with precision, allowing them to automate much of the billing process while eliminating excessive calling to locate drivers.
An IoT Software Suite to Connect Products to Customers' Business
Eclipse IoT
Solair started in Italy in 2011 with the observation that enterprise software severely lagged behind consumer software in affordability and simplicity. They have worked with customers in many industries including smart cities, manufacturing, industrial machinery and retail. Solair has recently begun to expand to do business mainly in Japan, Germany and the United States.“There are still many companies that don’t completely understand how to benefit from the potential advantages of connected products and they are looking for ready to use solutions that are quick to implement and bring measurable economic results,” said Martina Casani, Marketing Director, Solair. With a background in enterprise software, Solair now focuses on addressing business needs through end-to-end IoT solutions including an IoT Platform, a suite of IoT software modules and an IoT Gateway. “We started on the software side of IoT, but our customers were asking us for help on the hardware side,” said Casani. “We began to integrate an IoT Gateway in addition to software to help our customers from start to finish as they build an IoT application that collects data from the edge and brings it to the cloud.”
California Tomato Machinery
Fusion Connect
California Tomato Machinery (CTM) is the world' No.1 manufacturer of tomato harvesting tools and equipment. Their top customers were requesting a solution that would help them lower their total cost of ownership of machinery and assure maximum asset uptime.
Artificial Intelligence and the implications on Medical Imaging
Siemens
There are several factors simultaneously driving integration of AI in radiology. Firstly, in many countries around the world there is a discrepancy between the number of doctors trained in radiology and the rising demand for diagnostic imaging. This leads to greater demands for work efficiency and productivity. For example, the number of radiology specialists (consultant work- force) in England went up 5% between 2012 and 2015, while in the same period the number of CT and MR scans increased by 29 and 26 percentage points respectively. In Scotland, the gap widened even further (The Royal College of Radiologists 2016). Today, the average radiologist is interpreting an image every three to four seconds, eight hours a day (Choi et al. 2016).Secondly, the image resolution of today’s scanners is continuously improving – resulting in an ever greater volume of data. Indeed, the estimated overall medical data volume doubles every three years, making it harder and harder for radiologists to make good use of the available information without extra help from computerized digital processing. It is desirable, both in radiological research and in clinical diagnostics, to be able to quantitatively analyze this largely unexploited wealth of data and, for example, utilize new measurable imaging biomarkers to assess disease progression and prognosis (O’Connor et al. 2017). Experts see considerable future potential in the transformation of radiology from a discipline of qualitative interpretation to one of quantita- tive analysis, which derives clinically relevant information from extensive data sets (“radiomics”). “Images are more than pictures, they are data,” American radiologist Robert Gillies and his colleagues write (Gillies et al. 2016). Of course, this direction for radiology will require powerful, automated procedures, some of which at least will come under the field of artificial intelligence.
Energy Conservation and Efficiency in a Shanghai Office Building
Advantech
Conservation of energy resources through energy management solutions are receiving considerable attention in the modern office building sector. Specific questions were directed towards average monthly energy costs and energy consumption. Meanwhile administrators need to have sufficient information about the state of their facilities’ to plan energy conservation. For those reasons, new office buildings are usually embedded with advanced technology energy efficiency features to monitor their electricity and water resources to detect leaks in the building’s plumbing and facilities usage to reduce energy costs as well as providing a comfortable office environment.
Accurate Robot Machining
RoboDK
Industrial robots are highly repeatable but not very accurate. However, through a robot calibration process the accuracy of a robot arm can be improved to the point where it is close to its repeatability, usually under the 0.100 mm mark. This is becoming very attractive to small and medium enterprises as robot arms are very affordable and can be used for multiple manufacturing applications, including machining materials such as wood, plastic or marble.
IIC Precision Crop Management Testbed
Infosys
The global population is continuing to grow at a rapid pace placing increasing demands on the global food supply. In addition, impacts from climate change and a yearly reduction of available arable land will require the Agricultural sector to develop better ways of increasing crop yields and reducing costs. GOAL The goal for the Precision Crop Management Testbed is to create an environment where IoT solutions with the potential to impact world hunger can be developed.
A Reliable Power Control Automation System for a Steel Factory
MOXA
One of the largest steel factories in China needed proper communication control units for data processing and protocol conversion with the devices at remote field sites. These computers would replace the IPCs and can easily create a distributed system at the front-end site with a centralized management platform at the back-end control center. This stainless steel factory has deployed a power substation system that contains several subsystems. Each subsystem uses smart meters, and needs to optimize resources, centralize management, and enhance efficiency. In addition, all distributed smart meters at the field site need to be centrally monitored and managed by a system called the “CCMS3000 central management system”, located at the control center. Each 35KV/10KV substation communicates with the back-end server via Intranet, and manages the centralized management and monitoring of the 35KV/10KV. The entire system aims to optimize the power network management and maintenance cost, enhance power distribution quality and management, and deliver real-time discovery, analysis, recording, and handling of problems. The CCMS300 central management system is expected to bring reliability to real-time monitoring of the operation status of all devices at the substations. It needs to perform several tasks, such as analyzing historical workload, power consumption, and system balance, as well as enhance system or device operation efficiency. This system includes four subsystems: Factory 1: Main Station: A communication cabinet includes a telecommunication control unit (DA-662), a switch, 2 optical transceivers, and communication units. Station C: A communication cabinet includes a serial device server (NPort 5430), an optical transceiver, and communication units. Station D: A communication cabinet includes a serial device server (NPort 5430), an optical transceiver, and communication units. The telecommunication control unit (DA-662) is responsible for collecting and controlling all data from stations A, B, C, D, E, and the water station from Factory 1. Factory 2: Main Station: A communication cabinet includes a telecommunication control unit (DA-662), and various communication units. This DA-662 is responsible for collecting and controlling all data from stations G, K, and the water station from Factory 1. Hot-rolled Factory: Main Station: A communication cabinet includes a telecommunication control unit (DA-662), a switch, an optical transceiver, and communication units. Substation: A communication cabinet includes a serial device server (NPort 5430), an optical transceiver, and communication units. The DA-662 is responsible for collecting and controlling all data from the hot-rolled factory and the hot-rolled water station. Cold-rolled Factory: Main Station: A communication cabinet includes a telecommunication control unit (DA-662), a switch, an optical transceiver, and communication units. Substation: A communication cabinet includes a serial device server (NPort 5430), an optical transceiver, and communication units. The DA-662 is responsible for collecting and controlling all data from the cold-rolled factory and the cold-rolled water station. The communication between the DA-662 and the back-end server is based on the TCP/IP IEC 106 protocol. System Requirements • Centralized and stable management platform for the distributed system • Front-end data processing for the field site devices • Protocol conversion among Modbus, DLT645, and TCP/IP IEC 104 • Redundant network architecture for continuous system operation • Easy integration with other communication system • Long MTBF to enhance system reliability
Freight Farms: Innovative Agriculture through the IoT
Xively (Google)
Freight Farms’ goal was to create a connected farming environment that was simple to set-up, highly responsive, easy to scale, and would offer a path to future features and services - from day-to-day operations, to support, to growing optimizations, connecting their farms delivers an even greater experience to their farmers. After internal constraints for the hours of support required to build, integrate and maintain their own IoT solution, Freight Farms began looking at and evaluating IoT partners they could trust.

Contact us

Let's talk!

* Required
* Required
* Required
* Invalid email address
By submitting this form, you agree that IoT ONE may contact you with insights and marketing messaging.
No thanks, I don't want to receive any marketing emails from IoT ONE.
Submit

Thank you for your message!
We will contact you soon.